
 

 
9 

International Journal of 

Science and Engineering Investigations                          vol. 10, issue 110, March 2021 

ISSN: 2251-8843 Received on March 13, 2021 

Analytical Solutions of Diffusive Lotka-Volterra System taking 

into account the chemical and biological interpretations 
 

Atefeh Hasan-Zadeh1, Mohammad Mohammadi-Khanaposhtani2 

1,2Fouman Faculty of Engineering, College of Engineering, University of Tehran, Iran 
(1hasanzadeh.a@ut.ac.ir, 2muhammadi_mu@ut.ac.ir) 

 
 

 
Abstract-Lotka-Volterra equations are among the most 
commonly used equations in chemistry, biochemistry, ecology, 
biology, medicine, economics etc., and they are mainly solved 
by numerical methods; analytical methods subject to specific 
conditions in non-diffusion conditions are present. However, 
advanced concepts of Riemannian geometry including Lie 
symmetries and its generalizations (conditional Q-symmetries 
in this study) leads to the geometric classification of the 
analytic solution of the diffusive Lotka-Volterra system that is 
a lot more complicated than the analytical solutions resulting 
from non-diffusive setting. Accordingly, the exact solution of 
the diffusive Lotka-Volterra system along with its chemical 
and biological interpretations is presented for a nonlinear 
model of the competition of two populations. A comprehensive 
geometric classification of the exact solution of these equations 
is provided. Also, the solution for the non-linear Neumann 
boundary value problem and its different results for the 
definitive and soft competition model are carefully expressed. 

Keywords- Diffusive Lotka-Volterra System, Q-conditional 

Symmetry, Von Neumann Boundary Value Problem, Soft 
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I. INTRODUCTION  

Lotka and Volterra were pioneering researchers who set the 
background for the ecological mathematics. In the 1920s, they 
developed a mathematical model for prey-predator interaction. 
The first example of oscillation in a homogeneous chemical 
reaction is observed in a research text in 1921, [1]. The 
chemical interpretation was then assigned this observation to 
the Lotka-Volterra model in the sense that the oscillations in 
the cold flame can be described using this model. 

Numerous attempts have been made to numerically solve 
these equations, [2]. One can even point to the use of 
approximate inertial manifolds to solve these equations 
numerically, [3]. On the other hand, there are also attempts to 
find exact inertial manifolds for differential equations and 
dynamical systems, [4-5]. Therefore, it seems that advanced 
geometrical concepts can provide comprehensive and precise 
results to provide analytical solutions to the Lotka-Volterra 
system. 

The analytical solutions of the Lotka-Volterra model for 
sustained chemical oscillation were explicitly investigated by 

Evan, [6-7], which resulted in a simple modification of the 
model using the second-order nonlinear differential equation. 

The Diffusive Lotka-Volterra system is a much more 
sophisticated model than the non-diffusive one whose 
comprehensive study began about 40 years ago [8-10]. Today, 
the Diffusive Lotka - Volterra System, or DLVS, is used as one 
of the most widely used equations in modelling the interactive 
systems for a variety of processes in chemistry, biochemistry, 
ecology, biology, medicine, economics and more [11-16]. 

This paper presents the analytical solutions of these 
commonly used equations by advanced geometric concepts 
including generalized Lie symmetries ( Q -conditional 

symmetries) method. Using the Q -conditional symmetries, the 

DLVS is reduced to a set of ordinary differential equations 
(ODEs). Examples of possible exact solutions and possible 
biological interpretations of the obtained results are 
demonstrated; in particular, those who represent different 
scenarios of competition between the two populations are 
thoroughly discussed. 

In Section 2, the geometrical concepts necessary for solving 
the diffusive Lotka-Volterra equation are presented. Section 3 
introduces the diffusive Lotka-Volterra system and the results 
of its conditional symmetries are presented in Section 4. The 
results of reducing the diffusive Lotka-Volterra system to a 
system of ODEs and their exact solutions are investigated in 
Section 5. To express the biological interpretation, the studies 
of plane wave solutions for DLVS have been made for the 
model of the competition between two populations. Also, the 
solution of the Neumann boundary value problem (BVP) for 
the nonlinear DLVS, and its various interpretations in the cases 
of definitive/soft competition and their results are 
comprehensively presented. 

 

II. GEOMETRIC CONCEPTS 

As the standard notions of differential geometry and Lie 

groups ([17-18]) an n -dimensional manifold is a set M , 

together with countable coordinate charts U M   and one-to-

one local coordinate maps :U V     onto connected open 

subsets 
mV  R , which satisfy the following properties: 

The coordinated charts cover M : U M



 .  
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On the overlap of any pair of coordinate charts U U   

the composite map    1 : U U U U             is 

a smooth function. 

If x U , x U  are distinct points of M , then, there exist 

open subsets W V , W V with  x W  ,  x W   

and    1 1W W      . 

A local r -parameter Lie group consists of open subsets 

0
rV V  R  containing origin, and the smooth maps 

: rm V V R  and 0:i V V  defining the action group and the 

inversion action (respectively) which satisfy the following 
properties: 

associativity:      , , , ,m x m y z m m x y z  for all , ,x y z V  

with    , , ,m x y m y z V , 

identity:    0, ,0m x x m x   for all x V , 

inversion:      , 0 ,m x i x m i x x   for all 0x V  . 

A local group of transformations acting on a manifold M  is 
given by a (local) Lie group G , an open subset U  as the 

domain of definition of the group action with 

 e M U G M    , and a smooth map :U M   which 

satisfy the following properties: 

If  ,h x U ,   , ,g h x U  , and  . ,g h x U  then 

    , , . ,g h x g h x   . 

 ,e x x   for all x M . 

If  ,g x U  then   , ,g h x U   and   1, ,g g x x   . 

For brevity,  ,g x  is shown as .g x . 

At each point of a smooth parametrized curve : I M   of 

a subinterval of R  on a manifold M  there is a tangent vector 

      1 ,..., nd
t t t

dt


    .  

For an n -dimensional manifold M , xTM  which is a 

collection of all tangent vectors to all possible curves passing 

through a given point x  in M  forms the  is an n -dimensional 

vector space, with 
1

,...,
mx x

   
 
   

 as a basis for it.  

A vector field v  on M  associates the tangent vector 

x xv TM  to any point x M  that xv  varies smoothly of 

each point to the other. In local coordinates  1,..., nx x , it is in 

the form       1 2

1 2

... n
x

n

v x x x
x x x

  
  

   
  

 where each 

 i x  is a smooth function of x .  

The maximal integral parametrized curves    tt v    

passing through x M  is shown by  ,t x , and is called the 

flow generated by a vector field v  or a one-parameter group of 

transformations which leads to the interpretation of the vector 

field v  as the infinitesimal generator of the action  . Also, 

   ,, t x

d
t x v

dt   . This flow is denoted by    exp ,tv x t x  , 

then    expexp tv x

d
tv x v

dt
     for all x M .  

There is a one-to-one correspondence between the local 
one-parameter groups of transformations and their infinitesimal 

generators, i.e., for the vector field  i

i

v x
x





  on M  and 

the smooth function :f M R ,      0exp t

d
f tv x v f x

dt
  .  

If v  and w  are vector fields on M , then their Lie bracket 

,v w    is the unique vector field satisfying 

       ,v w f = v w f - w v f    for all smooth functions 

:f M R . 

For any group element g  of a Lie group G , the right 

multiplication map :gR G G  defined by   .gR h = h g  is a 

diffeomorphism, with inverse  1

1
-

-

gg
R = R . A vector field v  on 

G  is called right-invariant if ( )( | ) | |
gg h R h hgdR v v v   for all g  

and h  in G . The set of all right-invariant vector fields forms 

a vector space.  

A Lie algebra is a vector space G  with a bilinear operation 

.,. :     G G G , called the Lie bracket for G , satisfying the 

following axioms: , , ,cv c v w c v w c v w                and 

, ' , , 'v cw c w c v w c v w               , for all ,c cR , , ,v w = - w v        

and , , , , , , 0u v w w u v v w u                      
, for all , , , ,u v v w w   in 

G .  

The flow generated by a right-invariant vector field 0v   

through the identity, namely    exp exptg = tv e tv  is defined 

for all tR  and forms a one-parameter subgroup of G . 

Conversely, any connected one-dimensional subgroup of G  is 

generated by such a right-invariant vector field in the above 
manner.  

For a smooth real-valued function    1 rf x = f x ,...,x  of r  

independent variables, there are 
1

k

r + k -
r

k

 
  
 

, different k -th 

order partial derivatives of f . The multi–index notation 

   
1 2

...
k

k
j j jf x = f x x x x      is used to these derivatives 

which  1,..., kJ j j , 1 ij p  , 1 i k   Specifies the type of 

derivative adopted.   
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More generally, if :f X U  is a smooth function from  

rX R  to 
sU  R , so       1 ,..., su = f x = f x f x  has  . ks r  

numbers  J Ju = f x
  needed to represent all the different k

-th order derivatives of the components of f  at a point x . A 

typical point in  
1 ...

n
nU =U U U    will be denoted by 

 n
u  

which indicates all the derivatives of functions  u = f x  of all 

orders from 0  to n .  

A system of n -th order differential equations in r  

independent and s  dependent variables is defined as 

( , ) 0nx u  , for 1,...,l  , involving  1,..., rx = x x , 

 1,..., su = u u  and the derivatives of u  with respect to x  up 

to order n . For smooth function 

        1, , ,..., ,
n n n

lx u x u x u
 

    
 

,  ; ( ): nX U  R  can 

be considered as a smooth map of the jet space 
 n

X U  into an 

l -dimensional Euclidean space. For more details, refer to [17-

18]. 

Consider the k -order PDE 

 1, , , ,..., 0,   1,kL t x u u u k   (1) 

where  ,u u t x  is an unknown function, su  is a totality 

of s -order derivatives of  ,u t x , 1,...,s k , and L  is a given 

smooth function. 

Definition 1. ([12]) Operator Q  which satisfied in the 

equation 

     

   

0 1

2 2
0 1

, , , , , , ,

0,

t x uQ t x u t x u t x u  

 

     

 
            (2) 

is called the Q -conditional symmetry of PDE (1) if the 

following invariance criterion ( ) | 0k MQ L   is satisfied where the 

differential operator kQ  is the k -order prolongation of 

operator (2) and the manifold M  is defined by the system of 

equations 0L  ,   0Q U  , 
 

0

p q

p q

Q u

t x





, 1 1p q k     in 

the prolonged space of the variables 1, , , ,..., kt x u u u . In this case, 

 ,u u t x  is called the Q -conditional invariant under the 

operator Q . 

III. DIFFUSIVE LOTKA-VOLTERRA SYSTEM 

The Lotka-Volterra system consists of two nonlinear 
ordinary differential equations (ODEs) of the form 

 

 

,

,

e
e d

d
d e

du
u a bu

dt

du
u c du

dt

 

  

 (3) 

where the functions  eu t  and  du t  describe the time 

evolution of the numbers of prey and predators, respectively, 
, ,a b c  and d  are positive parameters with well-known 

interpretation, [19-20].  

The system (3) with quadratic nonlinearities can also 
describe other types of interaction (competition, mutualism), 
hence the classical Lotka– Volterra model is usually presented 
in the form 

 

 

1 1 1

2 2 2

,

,

e
e d d

d
d e d

du
u a b u c u

dt

du
u a b u c u

dt

  

  

 (4) 

Depending on the signs of coefficients in (4), three 
common types of interaction between two populations arise, 
namely: predator–prey interaction, competition and mutualism. 

 

IV. SYMMETRIES OF DIFFUSIVE LOTKA-VOLTERRA SYSTEM 

The two-component diffusive Lotka–Volterra system 

   

   

1 1 1 1

2 2 2 2

,

,

e
e e e dxx

d
d d e dxx

du
u u a b u c u

dt

du
u u a b u c u

dt





   

   

 (5) 

is examined, where 0k  , ,k ka b  and kc   1,2k   are 

arbitrary constants,  ,e eu u t x  and  ,d du u t x  are unknown 

functions presenting, for example, the population 
concentrations.  

Throughout the article it is assumed that system (5) is 

nonlinear and 2 2
2 1 0b c  , i.e., the system cannot consist of two 

independent equations.  

It is obvious that DLVS (5) with arbitrary coefficients is 
invariant under the two-dimensional Lie algebra generated by 
the operators of translation t tP    and x xP    one may look 

for the plane wave solutions of DLVS (5) of the form 

   ,   ,   ,  e du v u v v x t       R  (6) 

According to the literature ([13]), DLVS (5) is invariant 
concerning three- and higher-dimensional Lie algebra if and 
only if its reaction terms and the corresponding symmetry 
operator(s) have the forms listed in Table 1.  

If DLVS (5) with other reaction terms admits a nontrivial 
Lie algebra, then it is reduced to one of the forms presented in 
Table 1 by a local substitution from the set 

 11 10 12expe eu c c t u c  ,  21 22 20expd du c c c t u  , where 

kic  1,2,  0,1,2k i   are some correctly-specified constants. 

 



International Journal of Science and Engineering Investigations, Volume 10, Issue 110, March 2021 12 

www.IJSEI.com                      Paper ID: 1011021-02 ISSN: 2251-8843 

TABLE I.  LIE SYMMETRIES OF DLVS (5) 

Number Reaction terms Restriction Lie symmetries extending algebra Pt t   and Px x   

1    ,1 1 2 2u b u c u u b u c ue e e d e d     2 2
e d

D tP xP u ut x e u d u       

2 2,1 2b u b u ue e d   ,
d

D ud u  

3 2,01b ue    , , ,
d d

D u X P t xd u u
    

4  ,1 1 2u a b u b u ue e e d   
d

ud u  

5  ,01 1u a b ue e    , ,
d d

u X P t xd u u
    

6 ( ), ( )1 1 1 1u a b u u a b ue e d e   
1 2   ,u ud u e ud d

   

7 2,1 1b u b u ue e d  1 2   1, ,  
d d e dd u e u e u uu u D R btu       

 

V. MAIN RESULT 

Theorem 1. DLVS (5) admits Q -conditional symmetry 

under the relevant coefficient restrictions.  

Proof. The system of determining equations (DEs) for 
finding the Q -conditional symmetry operator are listed in 

Table 2.  

The differential consequences of the equations (4) and (5) 
of Table 2 concerning the variables of eu  and du  lead to the 

expressions   2
1 2 0

du     and   2
1 2 0

eu    , so that 

0
e du u   . Having  ,t x  , equations (1)-(5) of Table 2 

can be easily solved and one arrives at 

     

     

1 1 1 1

2 2 2 2

, , , ,

, , , ,

d e

e d

q t x u r t x u p t x

q t x u r t x u p t x





  

  
 

(7) 

hence, the most general form of symmetry operators for system 
(5) is  

1 1 1

2 2 2

( )

( ) ,

e

d

t x d e u

e d u

Q q u r u p

q u r u p

       

   

 (8) 

where the functions kq , kr  and kp  1,2k   should be found 

from the remaining equations (6)-(11) of Table 2. 

Substituting (7) and 0
e du u    into equations (6)-(11) of 

Table 2, those can be split with respect to eu
, du

, 
2

eu
, 

2
du

 

and e du u
. Finally, one obtains the system listed in Table 3 

which does not involve the unknown functions eu
 and du

. 

 

TABLE II.  DETERMINED EQUATIONS FOR Q -CONDITIONAL SYMMETRIES OF DLVS (5) 

Equation Number 

1 2 0
e e d d e d d d e eu u u u u u u u u u          1 

12 2 01 e ee e
u xuu u

       2 

22 2 02 d dd d
u xuu u

       3 

  12 2 01 2 d de d
u xuu u

         4 

  22 2 01 2 e ee d
u xuu u

         5 

   1 2 12 2 2 01 2 1 1 1 1d dd d

u a b u c ue d u uu xu
               6 

   2 2 22 2 2 02 1 2 2 2 2e ee e

u a b u c ud e d u uu xu
               7 

   1 2 2 12 2 3 2 01 2 1 1 1 2 2 2e d d e d e

u a b u c u u a b u c uu t u x u u e e d u d e d xxxu
                           
 

 8 

   2 1 1 12 2 3 2 02 1 2 2 2 1 1 1d e e d e d

u a b u c u u a b u c uu t u x u u d e d u e e d xxxu
                           

 
 9 

     1 2 1 1 2 1 1 1 12 2 21 2 1 1 1 1 1 2 1 1 1 2 2 2
d d e d

a b u c u c u u a b u c u u a b u c ut x e d e e e d x d e d xxu u u u
              
   

                 
   

 10 

     2 2 2 2 1 2 2 2 22 2 22 1 2 2 2 2 2 1 1 1 1 2 2 2
e e e d

a b u c u b u u a b u c u u a b u c ut x e d d e e d d e d x xxu u u u
              

   
                 

   
 11 



International Journal of Science and Engineering Investigations, Volume 10, Issue 110, March 2021 13 

www.IJSEI.com                      Paper ID: 1011021-02 ISSN: 2251-8843 

Analysis of the system of the equations (1)-(14) of Table 3 
shows that its solutions essentially depends on the relation 
between 

1  and 
2 . So, In the case 1 2  , DLVS (5) is Q -

conditionally invariant under operator (8) if and only if 

1 2b b b   and 1 2c c c  . 

 

TABLE III.  SIMPLIFICATIONS OF THE EQUATIONS OF TABLE 2. 

Equation Number 

  1 01 2c c q   1 

  2 01 2b b q   2 

2 1 2 01 1c q b r x
    
 

 3 

1 2 2 02 2b q c r x
    
 

 4 

1 2(2 ) ( 2 ) 01 2 1b b q c r x     5 

  2 12 2 02 1 2c c q b r x
     
 

 6 

  1 12 01 2 q qx      7 

  2 22 02 1 q qx      8 

  12 2 01 rt x x xx        9 

  22 2 02 rt x x xx        10 

 1 1 1 2 2 1 12 2 2 01 1 2 1 1 1r r q q c p b p a rt x x xx             
 

 11 

 2 2 1 2 1 2 22 2 2 02 2 1 2 2 2r r q q b p c p a rt x x xx             
 

 12 

   1 1 1 2 1 1 12 01 1 2 1 2 1q q q r a a q c p qt x xx            
 

 13 

2 2 2 2 2( 2 ) ( ) ( ) 02 2 1 1 2 2q q a a q b p qt x xx            14 

 1 1 1 2 1 12 01 1 2 1p p q p a p pt x xx          
 

 15 

 2 2 2 2 22 02 2 1 2p p q p a p pt x xx          
 

 14 

 

If 0bc   and 2 2 0b c  , then system (5) and the Q -

conditional symmetries have the forms (9) 

     

   

 

       

1 1

1 1

2

1

1 2

2
2 1 1 2

,

,

2
e e

,
d

e e e et xx

d d d et xx

x x
t x e

d u

u u u a u

u u u u

Q t u

t a t t u

 








 

     

  

 

     


    

           (9) 

(up to local transformations e eu bu , 
2

2

expd d

a
u t u



 
   

 
, 

d ecu u  and 
1

1

expe d

a
u t u



 
   

 
) where the function   0t   is 

the general solution of the linear ODE 

   2 2 2 2
2 2 1 1 1 1 12 0a a             . 

If 0bc   and the additional restrictions 1 2 0x xq q   hold, then 

exactly three cases (up to local transformations e eu bu , 

d dcu u , e du u  and d eu u ) exist when system (5) admits 

Q -conditional symmetry operators. They are listed as Table 4. 
 

TABLE IV.  CASES WHICH DLVS (5) ADMITS Q -CONDITIONAL 

SYMMETRY OPERATORS FOR 0bc   IN TABLE 3 

Equations Case 

     ,1 1u u u a u ue e e e dt xx
      

     , ,2 2 1 2u u u a u u a ad d d e dt xx
       

    , 0,1 1 2 1 2 1 2 1 2e d
Q a u a u a a a at d e u u            

     ,2 1 2 1 2 e d
Q a a ut e u u          

     3 1 2 1 2 e d
Q a a ut d u u          

1 

     ,1 u u u a u ue e e e dt xx
      

     ,2 u u u a u ud d d e dt xx
      

    ,  0,1 1 2 e d
Q a u u a at d e u u            

    , 02 1 2 1 2 e d
Q t u u  at d e u u             

2 

( ) ( ) ( ),1 1u u u a u ue t e xx e e d      

     ,    0,2 2u u u a u u ad d d e dt xx
       

    ,1 1 2 1 2 1 2 e d
Q a u u at d e u u               

 ,2 e d
Q aut e u u       

 ,3 e d
Q aut d u u       

    , 04 1 2 1 2 1 2 e d

atQ e a u u at d e u u                    
 

 

3 

 

In the case 1 2  , DLVS (5) admits only such operators of 

the form (8),which are equivalent to the Lie symmetry 
operators, [11].  

Theorem 2. Analytical solution of diffusive Lotka-Volterra 
system (5) can be obtained by considering the asymptotic and 
non-asymptotic behaviour of the response in accordance with 
the chemical and biological interpretations of DLVS (5).                                                                              

Proof. The DLVS (5) is invariant under time and space 

translations, so, its arbitrary solution    
0

,eu t x  and 

   
0

,du t x  generates a two-parameter family of solutions of 

the form  0 0,eu t t x x   and  0 0,du t t x x  . Therefore, these 

transitions can always be applied in order to get 0 0 0t x   in 

the solutions obtained below. 

The plane wave solutions of DLVS (5) in the case when the 
system models the competition between two populations will 
be found. 
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Introducing new notation 
1

k
k




 , k
k

k

a
a


 , k

k
k

b
b


   

and k
k

k

c
c


  , equation (5) is rewritten in the typical form 

     

     
1 1 1 1

2 2 2 2

,

,   

e e e e dt xx

d d d e dt xx

u u u a b u c u

u u u a b u c u





   

   
 (10) 

where all the coefficients are positive. Using ansatz (6), the 
competition model (10) is reduced to ODEs 

 
 

1 1 1 1

2 2 2 2

0,

0,   

vv v

vv v

a b c

a b c

    

     

    

    
 (11) 

For obtaining the solution of system of nonlinear ODEs 
(11), it is assumed that the following condition is satisfied: 

0 1 ,     (12) 

where 0  and 
1
  are certain constants to be found as below. 

Note that substituting (12) into (11) leads to an overdetermined 
system, which can possess non-constant solutions only under 
the condition 1 2    . So, without loss of generality we set 

1  . As a result, the single second-order ODE 

  0vv v a b ,        (13) 

is obtained, where the parameters a  and b  depend 

essentially on the additional parameter 0 , namely: 

1 2 0

1 2
1 2 0

2 2

1 2 1 2
0

1 2

2
1 1 1 0

2

, 0,

, ,

, 0,

, ,

a a

a c a
a a

c c

c b b c

c c
b

a
b c

c







 

 


 
 




 

 
  


 (14) 

1 2

2 1 1 2 1 2
1

1 2 1 22 1

1 1

,
, ,

, ,
,

b b

c c c c b b

c c b ba b

a c




   

 
 



 (15) 

ODE (13) possesses the exact solution 

 

2

1 exp
6

a a
v c v ,

b



  
      

  

          (16) 

where 
5

6
a   and c  is an arbitrary constant, [12]. 

If 0c  , then taking into account formulae (12) and (6) and 

fixing the upper sign in (16), the solution of DLVS (10)  

2

0 1

5
1 tanh

4 24 12

,   

e

d e

a a a
u x t ,

b

u u 

  
      

  

 

          (17) 

is obtained where the coefficients a , b , 0  and 1  are 

defined by (14) and (15). 

If 0c  , then solution (16) generates the solution of DLVS 

(10) as 

2

0 1

5
1 coth ,

4 24 12

.

e

d e

a a a
u x t

b

u u 

  
      

  

 

 (18) 

We apply the solutions (17) for solving the Neumann 
boundary value problem (BVP) corresponding to the nonlinear 
DLVS (10). Accordingly, a bounded exact solution of the 
nonlinear BVP, which consists of DLVS (10) (with 1 2 1  

), the initial conditions 

   

   

2

0

0 1 0

1 tanh
4 24

,   

e e

d e

a a
u x u x ,

b

u u x 

  
      

  

 

 (19) 

and the Neumann conditions 

               , , , , 0e e d dx x x x
u t u t u t u t         at 

infinity in the domain      , 0, ,t x        has the 

form (17). In formulae (17) and (19), the coefficients a , b , 

0  and 1  are defined by (14) and (15). For more details, refer 

to [13].  

In order to provide some chemical and biological 
interpretations, we note that two essentially different cases 
occur, namely: 0 0   and 0 0  . If 0 0  , then the solution 

(17) possesses the asymptotical behaviour  

  1

1

, ,0       ,e d

a
u u , t

b

 
   

 
 (20) 

provided that  max ,A B C , for 1

2

a
A

a
 , 1

2

b
B

b
 , and 1

2

c
C

c
 . 

In population dynamics, this indicates an uncompromising 
competition between the populations of the two species, i.e. eu  

and du . An increase in population eu  leads to a decrease in 

species du . Eventually, the complete disappearance of species 

du  takes place. In the case of the opposite condition 

 min ,A B C , the competition, in fact, has the same 

character, but in this case, species eu  eventually disappears, 

while species du  dominates. 

It should be noted that the significance of the asymptotical 
behaviour (20), which results in the definitive competition 
between the two species, is one of the advantages of diffusive 
Lotka-Volterra equations compared to the non-diffusion 
setting. In the real world, numerous biological interpretations 
of this type of the competition can be found, too [21-23].  

If 0 0   (in this case, the restriction 1 2a a a   follows 

from (14)), then solution (17) possesses the property 
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 
 
 

 
 2 2

1 1
, ,       ,e d

a C a B
u u , t

b C B c C B

  
  

   

 (21) 

Restriction 1 2
1

2 1

0
b b

c c



 


 must also be satisfied (see (15)), 

which guarantees that solution (17) is nonnegative. In terms of 

A , B  and C , formula (21) implies either the relation 

1B A C    or the relation 1C A B   . Solution (17) with 

property (21) describes the case of a ‘soft’ competition 
between two populations, which allows an arbitrarily long (in 
time) coexistence of species eu  and du . Figure. 1 illustrates the 

process of getting to the analytical solution of diffusive Lotka-
Volterra system (5).  

 

 

Figure 1.  Process of Obtaining the Analytical Solution of Dlvs (5) 

 

More details about the solutions of Von Neumann 
boundary condition for DLVS (10) with properties (19) and 
(20) can be found in [24]. Some studies related to the plane 
wave solutions of Neumann problem for DLVS (10) (in some 
special cases) can be found in [12-13], [15], [25-26]. 

 

VI. CONCLUSION 

The results obtained from the analytical solution of the 
diffusive Lotka-Volterra system using advanced geometrical 
concepts of Q-conditional symmetry was presented. Using 
these concepts, the diffusive Lotka-Volterra system was 
reduced to a set of ordinary differential equations and some 

examples of their exact solutions along with their biological 
interpretations were exhibited with the focus on the solutions 
that expressed different competition scenarios between the two 
populations.  

To give a more detailed chemical and biological 
interpretation of the responses, both the plate wave solutions 
and the Neumann boundary value problem answers were 
obtained for the nonlinear diffusive Lotka-Volterra system. 
Eventually, the chemical and biological interpretation of 
deterministic competition and soft competition were shown. 
The classifications provided for the geometric use of the 
concepts of extended Lie symmetries and ultimately the 
analytical solution of the nonlinear diffusive Lotka-Volterra 
system was presented in the form of new tables and diagrams. 
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