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Abstract-In this paper, the expression of a Riemannian 
manifold M  by a suitable fibration in the letters of the 
quotients of its isometries ( )I M  and its slices as the fiber has 

been shown. Also, the explicit corresponding relation between 
their Lie algebras has been driven. On the other hand, by 
another glance to tangent bundle ( )T M  as an associated bundle 

to the frame bundle M , ( )L M , and via a Lie algebra 

homomorphism between the Lie algebras of ( )T M , ( ( ))I ML  

and ( )M , the main tools of the geometry of ( )T M  to the 

ones of M  has been translated. Lastly, an exact sequence of 
vector bundles and Lie algebra sheaves corresponded to 
homogeneous bundle ( )I M  with the fibration of its slices, 

which is an example of "Atiyah sequence" has been extended. 

Keywords- Isometries, Associated Bundles, Proper Actions, 

Lie Algebra Homomorphisms, Slices 

 

I. INTRODUCTION  

The impression of algebraic properties of isometries of a 
Riemannian manifold M , ( )I M  on the geometric properties 

of it, can be found in old text such as [1-2]. In recent works, 
implicit use of this impression can be found in [3-4] for normal 
homogeneous manifolds, also, by passing to Killing vector 
fields of constant length in [5-7] for pseudo Riemannian 
manifolds of constant curvature. Therefore, the clarification of 
this connection for Riemannian manifolds is an approval of 
related concepts through various works and somewhat 
simplifying of them, too, which we progress it in a general 
setting. 

This progress consists of three parts: In Section 2, in a pure 
setting, contains the clarification of geometric and algebraic 
properties of isometries. This results to the expression of M  in 
letters of the action ( )I M , and its slices at a fixed point of this 

action and then, this identification in the literature of Lie 
algebras, mentioned in Theorems 3, 10, 15 and Corollaries 5, 6, 
12, 13, 16, and  Prologue to a Rigidity Problem, Problem 14. 

In Section 3, with an applied approach, we use of a suitable 
Lie algebra homomorphism between ( )I M  and ( )M , then 

let ( )T M  as an associated bundle to the frame bundle 

 ( ) , ( , )L M M GL M R  and consider the corresponded 

equivariant functions. In this way, the main tools of the 
geometry of M , in related to ( )M , can be translated to the 

letters of ( )I M , mentioned in Theorem 18 and Corollaries 18, 

20. Lastly, in Section 4, this progress reach us to an exact 
sequence of vector bundles and of Lie algebra sheaves as an 
example of Atiyah sequence which is the most sequence in Lie 
groupoid theory. It is to be noted that some rigidity problems in 
the geometry of Lie groups can be solved by Lie groupoid 
notions, for example refer to [8-10]. 

 

II. SOME FUNDAMENTAL RESULTS 

Let A  be a smooth action of a Lie group G  on M  which 

is proper at a point x M  which means that there exists a 

neighborhood U  of x  in M  such that 

 | ( )( )g G A g U U    has a compact closure in G , so xG  is 

a compact subgroup of G . A subset N  of M  is said to be G -

invariant if .g y N , whenever y N , g G , equivalently N  

is a union of orbits. If A , and A  be actions of G  on the 

manifolds M  and M  , respectively, then a smooth mapping 
: M M    intertwines A  with A , or is G -equivariant of 

M  to M  , if ( ) ( )A g A g   , g G  . Also,   is an 

equivalence of smooth actions if it is a smooth diffeomorphism 
of M  to M   intertwining A  with A . In this case, the actions 
A  and A  are said to be smooth equivalent. 

We consider the smooth action :mA G M  at a point 

m M , fixed in the Part I, and the infinitesimal action 

: :m e m mT A T M G  at this point:  

Proposition 1. ([11]) Let A  be a smooth action of a Lie 
group G  on a manifold M  and proper at a point m M . Then 

there exists a G -invariant open neighborhood U  of m  in M  

such that the G -action in U  is smooth equivalent to the action 

of G  on 
mGG E  with an equivalence : .

mGG E U    

Here E  is an open mG -invariant neighborhood of 0  in 

( )m mT M  G , on which mG  acts linearly, via the tangent 

action ( )mk T A K  modulo ( )m G . 
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Remark 2. In explicit words, Proposition 1 says that in a 
suitable G -invariant neighborhood of any orbit .G m , the 

action is equivalent to a standard one that is constructed in the 
terms of the Lie group G , the stabilizer group mG , and the 

tangent representation of mG  on ( . )m mT M T G m , that this 

structure explained in framework of associated fiber bundles. 

For constructing an associated fiber bundle, we consider 
( , )P M G  as a principal fiber bundle and F  as a left G -

manifold, i.e., G  acts by diffeomorphisms from the left on F . 

We denote by r  this action of G  on F  and by gf  or ( )r g f  

the element ( , )r g f . Then we have the following right action 

R  of G  on the product manifold P F , 1( , ) ( , ( ) ,u f g ug r g f

,( , )g G u f P F    . The action R  is free and its orbit space is 

denoted by rP F  or by ( , , , )E E M F r P . Precisely, we have 

the following commutative diagram: 

 

 

Diagram 1 

 

where  , : P F E   defined by the rule ( , ) [ , ]u f u f  and 

:E E M  , by the projection : E M  , i.e., 

([ , ]) ( )E u f u  , also the map P F P  , is the projection 

onto the first factor. If the action of G  on P  and F  is 

considered to be proper too, then the action of G  on P F , 

will be proper. 

Theorem 3. ([11]) Let G  be a Lie group acting properly 

and in a smooth fashion on the (paracompact) manifold M . 
Then M  has a G -invariant smooth Riemannian structure g . 

Remark 4. Theorem 3 is the other interpretation of this 
famous result: "Every reduction of the structure group 

( , )GL m R  of ( )T M  to ( )O m  gives rise to a Riemannian metric 

g  on M , and conversely." 

Corollary 5. As the before notions, there is a connection 
between ( )L M  and ( )I M . 

Proof. Let ( )O M  be a compact subgroup of ( , )GL m R  

acting by linear transformations on a finite dimensional vector 

space m
R . By taking an arbitrary left invariant Riemannian 

structure   on ( , )GL m R  and some inner product   on m
R , 

we get a left ( , )GL m R -invariant Riemannian structure 

     on ( , ) mGL m R R . Then, by averaging over the 

action of ( )O M  on ( , ) mGL m R R , we get a real-analytic, 

( )O M -invariant Riemannian structure   on ( , ) mGL m R R  

which still is left ( , )GL m R -invariant.  

In this way, by the projection map 

( )( , ) ( , )m m
O MGL m GL m  R R R R , we reach to a unique 

Riemannian structure   on ( )( , ) m
O MGL m R R  which is real-

analytic and ( , )GL m R -invariant. So, as Proposition 1, this 

Riemannian structure is mapped by the smooth equivalence to 

a smooth ( , )GL m R -invariant Riemannian structure on the 

( , )GL m R -invariant open neighborhood U  of m M . Finally, 

it is sufficient to use a ( , )GL m R -invariant partition of unity 

subordinate to the U ’s of the smooth class. In effect, we 

should consider this fact that the Riemannian metric on a 

manifold M  is a Riemannian metric on ( , , , ( ))mTM M r L MR as 

an associated bundle to the frame bundle ( )( , ( , ))L M M GL m R .  

In the sequel, this connection will be expressed in the 
clearer letters. 

Corollary 6. The isotropy representation 

: ( )m mT M GL T M  ; ( ) mg T g  , defines an isomorphism of 

( ( ))mI M  onto a closed subgroup of ( , ) ( )m m mO T M g GL T M . 

Proof. We use this fact that the action of ( , )GL m R , 

restricted to a suitable ( , )GL m R -invariant open neighborhood 

U  in M  of the fixed point m , is equivalent to the linear 

tangent action of G  on mT M , restricted to an open 

neighborhood of 0  in mT M . 

Also, injectivity of linear isotropy representation is by this 
fact that an isometry g  is determined by giving only the image 

( )g x  of a point x  and the corresponding tangent map xT g .   

Remark 7. More interesting result than Theorem 3 is, 
conversely:  

If g  is a smooth Riemannian structure on a manifold M , 

then the group ( )I M  of isometries of the corresponding metric 

space is equal to the group of automorphisms of ( , )M g , and is 

a finite-dimensional Lie group. Its action on M  is proper and 
smooth, and its Lie group topology coincides with the smooth 

topology on ( ) ( )I M Diff M , and with the topology of 

pointwise convergence. Then, any closed subgroup G  of 

( )I M  is also a Lie group acting properly and in a smooth 

fashion on M . Also, the orbits of G  are closed if and only if 

the action of G  is orbit equivalent to the action of the closure 

of G  in ( )I M . 

Example 8. The canonical sphere nS  may be viewed as the 

homogeneous manifold ( 1) ( )SO n SO n , but there also exist 

other compact connected Lie groups acting effectively and 
transitively on some spheres. Table 1 and 2 can be found in the 
works of Borel ([12]) and Montgomery ([1]). The action of G , 

as a closed subgroup of ( )I M  on the corresponding sphere kS  

is obtained by considering some special linear representation of 

G  in 1k
R  such that G  acts transitively on the unit sphere of 

1k
R  (Corollary 6 and Remark 7). 
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TABLE I.  SPHERES AS A HOMOGENEOUS MANIFOLD 

G  Sphere Gm  

( )SO n  1nS   ( 1)SO n   

( )U n  2 1nS   ( 1)U n   

( )SU n  2 1nS   ( 1)SU n   

( ) (1)Sp n Sp  4 1nS   ( 1) (1)Sp n Sp  

( ) (1)Sp n U  4 1nS   ( 1) (1)Sp n U  

( )Sp n  4 1nS   ( 1) (1)Sp n U  

 

and some special cases: 

 

TABLE II.  SPECIAL CASES OF TABLE 1 

G  Sphere Gm  

2G  6S  (3)SU  

(7)Spin  7S  2G  

(9)Spin  15S  (7)Spin  

 

Definition 9. A smooth slice at m M  for the smooth 

action A  on M  is a smooth submanifold S  of M  through m  

such that, in before notations: 

i. ( )m m mT M T M G  &  ( ) ( )x x xT M T S x S   G , 

ii. S is mG -invariant, 

iii. if x S , g G  and ( )( )A g x S , then mg G  

Theorem 10. For the smooth action ( )I M  on M  and 

proper at m M , we get the ( )I M -equivariant smooth 

fibration (fiber bundle),  : ( ) ( )
m

U I M I M  , where U  is 

the ( )I M -invariant open neighborhood of m M  as 

mentioned in Proposition 1, and we will have the trivialization 

 ( ) ( ) ,
m

U I M I M F 
 

with the fiber F  which is the slice at m M  for the smooth 

action of ( )I M  on M  (at least, up to isomorphism). 

Proof. As Proposition 1, for the smooth action ( )G I M , 

we observe that 

1
( ( )): ( )

mI MU I M E  
 

followed by the projection 

( ( ))( ) ( ) ( ( ))
mI M mI M E I M I M 

, 

defines a smooth ( )I M -equivariant fibration 

( )( ) ( ( ))mU I M M I M , for which the orbit ( ).I M m  is a global 

section. For the last assertion, we come back to details of the 

fibration: In reality, E  is the smooth slice at m M  for the 

smooth action A  of ( )I M  on M , since:  

i.   ( ( )) , ( ( ))m m m x x xT M M T E T M T E x E      I I M  

ii. E is ( ( ))mI M -invariant. 

iii. If x E , ( )g I M  and ( )( ) ( )A g x g x E  , then

( ( ))mg I M . 

Also, the equivalence map 

( ( )): ( )
mI MI M E U  

 

is defined as ( )|I M EA    such that 

( ( )): ( ) ( )
mI MI M E I M E   

 

is the principal fiber bundle with the structure group ( ( ))mI M  

which leaves invariant E , and of course,  conserves the 
fibers. The projection 

( ( ))( ) ( ) ( ( ))
mI M mI M E I M I M 

 

is the smooth fibration with the fiber E , too. In summation of 
the discussions, F E  (at least, up to isomorphism).   

Remark 11. The properness of the ( )I M -action on 

( ( ))( )
mI MI M E

 

implies that the action of ( )I M  on the ( )I M -invariant open 

neighborhood U  of m  in M  is proper, too. Roughly speaking, 

proper at m  is equivalent to proper on one ( )I M -invariant 

neighborhood. 

Corollary 12. The fiber F  in Theorem 10, is the 
submanifold of M  which intersects ( ).I M m  transversely and 

has complementary dimension. 

Proof. The map ( ) ( ( )) ( ).mI M I M I M m  is a bijective map 

and in reality, a smooth immersion which exhibiting the orbits 
as an immersed smooth submanifold of M . On the other hand, 
the identity map of E  into M  induces a homeomorphism 
from ( ( ))mI M -orbits in E , ( ( ))mE I M , onto an open 

neighborhood of ( ).I M m  in the space of ( )I M -orbits in M . 

Then, the assertion is a direct result of Definition 9.   

These dependence between ( )I M  and M  does not 

conclude to this results. In the setting of Lie algebras, by 
considering Theorem 2, we will have, too: 

Corollary 13. For the transitive and proper actions, the 
identification of ( )I M  gives rise to the identification of  M  

and conversely. Then, Killing vector fields can be recognized 
of M  and conversely. 

Proof. The Killing vector fields at a point m M  are 

tangent to the orbit of this point and corresponds to ( )I M  

under an anti-isomorphism Lie algebra. Then, it is sufficient to 

use of the relation,  ( )m m mT M T E I M , which mT E  is 

zero, for these actions.   
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In more precise letters, as mentioned in Introduction, we 
will have: 

Problem 14 (Prologue to a Rigidity Problem). Let 

,M M   are two m -dimensional homogeneous Riemannian 

manifolds, and f  is a continuous and group isomorphism 

map of ( )I M  to ( )I M  . Let ( )V M  (the (complete) Killing 

vector fields of M ). Then, we get to a vector mv T M   

corresponded to V , under a homomorphism of ( )M  onto 

mT M   (for m M  ). Also, we reach to a Lie anti-isomorphism 

between ( )M  and ( )I M . 

Answer. Let 

  ( )t t
I M 

 

is the (full) flow of the (complete) vector field ( )V M . We 

consider the unique flow 

  ( )t t
I M  

 

corresponded to it by the map f . Then, we get to the Killing 

vector field ( )V M  , as an element of the Lie algebra 

corresponded to its one-parameter subgroup tt  . Lastly, 

we get to ( )V  I M  under the Lie anti-isomorphism 

( ) ( )M I M , and project it to a mv T M   under the 

projection d ; note that : ( )I M M    is submersion because 

of transitivity of the action ( )I M   on the (homogeneous) 

manifold M  . 

Also, for the flows of , ( )V W I M  shown by ,   at a 

point x M  (respectively), it can be proved that   as the flow 

of [ , ]V W  equals the following: 

 
 

( , ) lim

( )

t n t n t n t nn

t n t n t n t n

t x

x

   

   

   

   

 

 

thus, f  respects the corresponding brackets. The structure of 

the proof has been shown in Dig.2: 

 

 

Diagram 2 

 

In completion of the relation between ( )I M  and M  in Lie 

algebra letters, we have: 

Theorem 15. Let K  be a smooth submanifold of ( )I M , 

through its identity e  such that  ( ) ( ) em
T K I M I M  where 

   ( ) ker ( ) | ( ) 0m mm
X X    I M I M . 

Then, there exist open neighborhoods K̂  and Ê  of e  and 

m  in K  and the slice E , respectively, such that  

ˆ ˆ|
K E

A
  

smooth diffeomorphism from ˆ ˆK E  onto an open 

neighborhood M̂  of m M . 

Proof. We have 

( , )

( , )

| : ;

| ( , ) ( )

e m K E e m m

e m K E m

T A T K T E T M

T A X v X v





 

 
 

Because of ( ( )) 0m mT E I M , ( ) 0m X v   , the 

equation ( )m X  results in ( ) 0m X   and 0v  . Next, 

 ker 0m eT K   implies that 0X  . Then this map is 

injective. 

Also, 

dim( ) dim ( ) dimker dim dim ( ( ))

                  dim dim

m m m

m

K E I M T M

T M M

     

 

I M

 

So, it is sufficient to apply the inverse mapping theorem.   

Corollary 16. For infinitesimally locally free action at m , 

( )I M  acts locally on M  by the multiplication only on the first 

factor, i.e., K̂ , as Theorem 15. 

Proof. In this case, ( ( )) 0m I M . Then, K̂  is an open 

neighborhood of e  in ( )I M . Then, in the local identification 

of M  with ˆ ˆK E , the local action of ( )g I M  consists of 

(left) multiplication by ( )I M  only on the first factor. 

 

III. SOME APPLIED RESULTS 

After the discussion, we want to exit of this abstract setting 
and, in a applied manner, the main concepts of the geometry of 

( )I M  express in the ones of M . Thus, for this translation we 

seek a suitable Lie algebra homomorphism between ( )I M  and 

M , (as analytic vector fields on identity) and maybe its 

extension, the Lie algebra of vector fields on M : 

By considering the proper action of ( )I M  on M , ( )I M  

can be connected to the Lie algebra of vector fields of M , 

( )M . At first, in general case, if the Lie group G  acts on M  

(on the right), we assign to each element V G  a vector field 

( )V M  by restricting the action to the 1-parameter 

subgroup ( ) exp( )t tV   on M . Then, we have the following 

lemma: 

Lemma. ([3]) Let a Lie group G  act on M  (on the right). 

The mapping : ( )F MG  which sends V  into V   is a Lie 

algebra homomorphism. If G  acts effectively on M , the F  is 

an isomorphism of G  into ( )M . If G  acts freely on M , 

then, for each non-zero V G , ( )F V  never vanishes on M . 
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Note that ( )M  is the section of ( )T M , and 

 , , , ( )mTM M r L MR  

is the associated bundle to  ( ) , ( , )L M M GL m R  by fiber type 
m

R  and the left action r  given by the representation of 

( , )GL m R  on m
R . Precisely by substituting in the Dig.1 of 

Section 2, we get into the following diagram: 

 

 

Diagram 3 

 

For ( )xu L M  we have the map m
xu T M R , which is a 

linear isomorphism. In the other words, we can define a frame 
by the map u  using the vector bundle structure of TM  with the 

action of ( , )GL m R  given by the rule .u g u g ,  where 

( , )g GL m R  is regarded as a map from m
R  to m

R . 

Then, we reach to a one-to-one correspondence between 

( , )GL m R -equivariant functions from ( )L M  to m
R , 

( , )( ( ), )m
GL mF L MR R , 

and the sections of TM , ( )M , which is defined as follows: 

Let ( )V M , then we define 

1: ( ) ; ( ) ( ( ))m
V Vf L M f u u V x R

 

where ( )u x   and : xu F E  is the isomorphism defined by 

( )u L M . Conversely, given a ( , )GL m R -equivariant 

( , )( ( ), )m
GL mf F L M R R , 

i.e., 1( ) ( )f ug g f u , ( ( , )g GL m  R , ( )u L M )  then, we 

define 

( )fV M
 

by 

( ) [ , ( )]fV x u f u , 

as the notions of Section 2, where 1( )u x  . This is well-

defined because of equivariance. 

Theorem 18. The covariant derivative restricted to the 
elements of ( )I M , of any order, can be defined in the terms of 

Lie derivative of vector fields on M , and also, in the letters of 
canonical forms of ( )L M . 

Proof. The covariant derivative UD V  corresponds to 

ˆ ( )VU
L f

 

where Vf  defined as above notions, and Û  is the horizontal 

lift of ( )U M  to ( )L M . Precisely, ˆ( . )U VD V u U f . Also, 

ˆ ˆ( ( )) ( ( ( )))xD U x u U V ; ( )u x   

and , ( )U V M  which   is the canonical form of ( )L M , i.e., 

the m
R -valued 1-form on ( )L M  defined by 

1( ) ( ( )),  ( )uX u X X T L M 
  

 

Then, by considering ( )G I M  and its action on M  in the 

sense of . ( )x g g x , ( ( )g I M  ), we get a Lie algebra 

homomorphism between ( )I M  and ( )M  as Lemma 17. So, 

we get into the following diagram: 

 

 

Diagram 4 

 

If the action A  of ( )I M  on M  is effective (by passing to 

the Lie group ( ) ker( )I M A  if necessary), we can finally get a 

one-to-one linear mapping of ( )I M  to 

( , )( ( ), )m
GL mF L MR R . 

Finally, the covariant derivatives D , ( )D D , … of any order 

can be translated to the corresponding letters.   

Remark 19. This translation is very valuable, since the 
definition of the covariant derivatives in contrast with the Lie 
derivatives need to define the further construction, i.e., the 
connection on a manifold. Furthermore, the calculations by 

ˆ
ˆ ˆ( ) ( ) .V V VU

L f df U U f 
 

are simpler than UD V . Also, we need to pass of G -invariant 

functions because of the simplification of complex notions and 
of course, for well definiteness of these action-invariant 
notions. 

Corollary 20. For , ( )U V M , ( )u L M  (or for the 

elements of ( )I M  corresponded to them as Dig. 4), 

[ , ]( ) [ ( ), ( )].u v U Vf u f u f u
 

Proof. As Lemma 17, : ( )F MG  can be defined in this 

manner: 

For every x M , let xF  be the mapping a G xa M   , 

then ( ) ( )x e xF V FV  . It follows that F  is a linear mapping of 

( )GG  into ( )M . To prove that F  commutes with the 
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bracket, let ,V W G , V FV  , W FW  , expt tV  . Then 

(by ignoring the details of computations), 

   

  
   

1

0

1

0

1
[ , ] lim

1
           lim

       = [ , ] [ , ]

x e x t e
t

x e t e
t

x e x

V W F W F ad W
t

F W ad W
t

F V W F V W





  







 

 
  

 



 

On the other hand, for , ( )U V M  and x M , the value 

at x  of the (Lie algebra) bracket [ , ]U V  is [ ( ), ( )]xU x V x  where 

[,]x  is the restriction of [,]  to associated bundle 

 ( ) ( , ) ( , ) |xL M m GL m R RGL , i.e., xT M . Then we should 

show that for 1( )u x   and , ( , )X Y m RGL ,  

[[ , ],[ , ]] [ ,[ , ]],xu X u Y u X Y
 

which means that F  is a Lie algebra homomorphism of G  into 

( )M . 

In this way, since gAd   is a Lie algebra automorphism for 

all ( , )g GL m R , this bracket is well defined. In the sequel, the 

proof will be completed behind to the flows as above with 

noting that the bracket on the right hand side is the right hand 

bracket on ( , )m RGL .   

Corollary 21. The curvature tensor field and torsion tensor 
field restricted to the elements of ( )I M , can be defined in the 

letters of ( )M , too. 

Proof. At first, we prove that the corresponding k -forms, 

1k  , can be translated: By the one-to-one correspondence 

mentioned in this section, for  ( ),k mL M R  as a tensorial 

k -form of type ( , ( , ))ad m RGL , (i.e., 1( ).aR ad a    
( ( , ))a GL m  R , and 1( ,..., ) 0kX X  , whenever some iX ; 

1,...,i k  is vertical), there exists a unique k -form S  on M  
with values in the vector bundle ( , )( ) ( ) m

GL mT M L M  R R  
defined as follows, 

   1 1( ) ,..., ( ) ,..., ,  ,k kS x X X u u Y Y x M   
 

where 1( )u x  and ( )i uY T L M such that ( )i iT Y X  , 

1,...,i k (not necessarily horizontal). 

Due to tensoriality of  , this definition of  S  is  

independent of the choice of u  and iY . Now, it is sufficient to 

apply Dig.4 and use of definition of curvature and torsion 

tensor fields, (for more details about this notions, refer to [13]). 

 

IV. AN EXTENSION 

Of before two sections, we reach to one exact sequence for 
vector bundles and of Lie algebras sheaves, which high lights 
the connection between ( )I M ; ( )I M  and ones of M , as we 

wanted. In this way, we reach to an example of Atiyah 
sequence with the same algebraic and geometric properties, 
that it is the most sequence in Lie groupoid theory ([14]): 

For the closed subgroup ( ( ))mI M  of the Lie group ( )I M , 

we consider the homogeneous bundle 

( )
( ) ,( ( ))

( ( ))
m

m

I M
I M I M

I M

 
 
   

(locally on ( )I M -invariant open neighborhood of m ). Now we 

will reach to the sequence, 

   ( ) ( ) ( ) ( )

( ( )) ( ( )) ( ( ))

m

m m m

I M T I M I M
T

I M I M I M

  
   

 

I M
          (1) 

where the inclusion map, j  is  , ( )( )e gj g X T L X       and the 

second map is   ( )X T X     . This is an exact sequence of 

vector bundles together with the suitable bracket structure 

induced on them, Theorem 18 and Corollary 20. 

There are two alternative formulation of this sequence 
using of our results: 

Firstly: The vector bundle isomorphism 
( ) ( ) ( ( ))I M T I M I M , which is ( , ) ( )( )e gg X T L X , 

respects the right actions of ( ( ))mI M . So quotients to a vector 

bundle isomorphism 

 ( )( ) ( )

( ( )) ( ( ))m m

T I MI M

I M I M




I M
, 

where 

( ) ( )

( ( ))m

I M

I M

 I M

 

is the bundle associated to 

( )
( ) ,( ( ))

( ( ))
m

m

I M
I M I M

I M

 
 
   

through the adjoint action of ( ( ))mI M  on ( )I M . 

Likewise, there is a vector bundle isomorphism 

 
( )

( )
( ) ( )

( ( )) ( ( ))

m

m m

I M
I M

T
I M I M

 
  
       

 

I M
I M

 

defined by the rule 

   , ( ) ( )e gm
g X T L X  I M , 

where ( ( ))mI M  acts on the vector space 

 

( )

( )
m

I M
I M

 

by     ( ) ( )hm m
h X Ad X  I M I M .  

Thus the sequence of vector bundles (1) can be written as 
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( ) ( ) ( ) ( )

( ( )) ( ( ))

                         

( )
( )

( )
                          

( ( ))

m

m m

m

m

I M I M

I M I M

I M

I M

 




 
  
 
 

I M I M

I M
I M

            (2) 

where the inclusion map is  1 , ,j g X g X        and the second 

is    1 , , ( )
m

f g X g X      I M . 

Secondly: The map 

( )
( ) ( ) ( )

( ( ))m

I M
I M

I M
  I M I M , 

by the rule 

    , ( ) , gm
g X g I M Ad X , 

which is a vector bundle morphism over 

 

( )
: ( )

( )
m

I M
I M

I M
  , 

respects the action of 

 ( )
m

I M
 

on ( ) ( )I M I M  and so induces a vector bundle morphism 

( ) ( ) ( )
( )

( ( )) ( ( ))m m

I M I M

I M I M


 

I M
I M , 

which is easily seen to be an isomorphism. So (1) can also be 
written as 

 ( ) ( ) ( ) ( )
( )

( ( )) ( ( )) ( ( ))

m

m m m

I M I M I M
T

I M I M I M

  
    

 

I M
I M           (3) 

where the inclusion map, 2j  is 

   2 , ( ( )) ,m gj g X g I M Ad X  
 

and the second map, 2f  by the rule 

   12 ( ( )) , ( )m e g
f g I M X T R X  . 

In this way, the central term in exact sequence associated to 
principal bundle ( )I M , i.e., 

( )
( ) ( ( ))

( ( ))
m

m

I M
I M I M

I M

 
 

 
, 

may be viewed as the bundle of infinitesimal displacement of 
the fibers. 

V. CONCLUSION 

In this paper, a new geometric approach was presented to 
calculate the number of time-frequency projections from some 
angles in filtered back-projection image which are equally 
spaced using of the surface area of the convex body and 
(symplectic) Holmes-Thompson volume. In fact, the 
calculations were made in terms of the volume of the Holmes-
Thomson (as the bridge between Finsler geometry, integral 
geometry, and symplectic geometry). The projections from 
some angles which are equally spaced, the number of time-
frequency projections from some angles which are equally 
spaced, and the low image correctness was corresponded to the 
notions of Finsler geometry. In this way, the proposed 
geometric approach can provide an appropriate answer to some 
medical imaging issues in optimum filtered back-projection 
images. 
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