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Abstract- In this paper two-time scale method is used to control 
an 8-DOF missile autopilot. The mathematical model is 
developed using the singular perturbation theory. Structural 
properties of the system in terms of the slow and fast 
subsystems are established. An asymptotically optimal two-
time scale controller was developed for missile. The two-time 
scale controller was compared to the optimal controller, and it 
was demonstrated that there is negligible degradation in 
performance. 
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I. INTRODUCTION 

Over the years a number of authors have considered 
modeling, analysis and design of autopilots for atmospheric 
flight vehicles including guided missiles. In the majority of the 
published work on autopilot analysis and design, locally 
linearized versions of the model with decoupled airframe 
dynamics have been considered. This latter simplification 
arises out of the assumption that the airframe and its mass 
distribution are symmetrical about the body axes and that the 
yaw, pitch and roll motion about the equilibrium state, remain 
"small". 

As a result, most of the autopilot analysis and design 
techniques, considered in open literature, use classical control 
approach, such as single input-single output transfer functions 
characterization of the system dynamics and bode, nyquist, 
root-locus and transient response analysis and synthesis 
techniques. These techniques are valid to cover a wider set of 
flight regimes and an airframe configuration requires autopilot 
design. 

With the advent of fast processor it is now possible to take 
a more integrated approach to autopilot design. Modern 
optimal control techniques allow the designer to consider 
autopilots with high order dynamics (large number of states) 
with multiple inputs/outputs and to synthesis controllers such 
that the error between the demanded and the achieved output is 
minimized. 

II. GENERAL MISSILE 8-DOF MODEL 

It is often the case in control systems design that while the 
concept are valid for any system order, their actual application 
is restricted to lower order system models. This is because 
higher order system model design may require excessive 
computation. Such prohibitively high system order can be 
caused by the presence of small "parasitic" parameters, 
typically small time constants, masses, etc. 

Several approaches exist at present to reduce the system 
order, such as retaining dominant modes or neglecting fast 
modes. In singular perturbation method, both slow and fast 
system modes are retained while control system analysis and 
design may be solved in two separate parts, one for the slow 
modes and the other for the fast. 

The objective is to approximate the performance of the 
original system through the analysis and design of the slow and 
fast mode subsystems with separate time-scales. By 
approximating the system with its slow and fast modes, both 
the high dimensionality and stiffness difficulties of the original 
singularly perturbed system are alleviated while retaining, in 
some sense, an approximation to the original system 
performance. 

We can define three airframe axes for a missile like shown 
in Fig. 1. 

 

 

Fig. 1: Missile Body axes 
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If α and β equals to angle of attack and slide slip angle of 
missile: 
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 And assume that they are small, by using Newton and 
Euler Equations in composition with (1) and (2), 8 DOF model 
of a missile can be written as: 
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In these equations; U, V, W are the velocity components 

measured in the missile body axis. P, Q, R are the components 
of the body rotational rate. Fxg, Fyg, Fzg are the gravitational 
forces acting along the body axis and Ix, Iy, Iz are the missile 
moments of inertia. Also the aerodynamic force and moment 
coefficients are described in a polynomial form with respect to 
angle of attack α, angle of slideslip β, pitch fin deflection δQ, 
yaw fin deflection δR and the roll fin deflection δP. The 
coefficients of the polynomials describing the aerodynamic 
coefficients were derived by carrying out least squares fits on 
the aerodynamic data [4]. The variable S is the reference area 
and l is the reference length. For a regular missile VT, Mach 
number M and dynamic pressure q are defined as: 

T

2 2 2V U V W                                 (11) 

VT
M

a
                                       (12) 

2

T

1
q V

2
                                     (13) 

After linearizing these equations and adapting to state space 
form, the state vector and the control vector are chosen to be: 

T
x [ p q r u v w]                       (14) 

T

Q R P
u [ ]                             (15) 

 

III. STANDARD LQG DESIGN 

The Kalman filter gain matrix K is given by [13]: 

T 1

e
K P C V


                                (16) 

T 1 T

e e e e
AP P AP C V CP LWL 0


                 (17) 

The optimal state-feedback gain matrix G is given by: 

1 T

c
G R B P


                               (18) 

Where Pc satisfies the following algebraic Riccatti 
equation: 

T -1 T TPA+A P-(PB+N)R (B P+N )= -Q         (19) 

So optimal control of the system with the cost function will 
take the form: 

ˆU=GX                                 (20) 

Where the estimated states are obtained from Kalman filter. 

 

IV. LQG DESIGN USING TWO-TIME SCALE METHOD 

In Two-Time Scale method, the dynamics of a system is 
comprised of two separate sets of fluctuating modes. One set of 
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modes are the slow dynamics, denoted by λs, and another set is 
the fast dynamics that denoted by λf. 

Without loss of generality, the ratio of: 

s fmax min
/ 

 

is taken as the approximate value of the singular 
perturbation parameter ɛ given by: 

s fmax min
/                            (21) 

In order to use two-time scale property of the system, state 
space equations are partitioned as: 

11 12 1 1X=A X+A Z+B U+L W                    (22) 

21 22 2 2
ˆ ˆ ˆ ˆZ=A X+A Z+B U+L W                   (23) 

1 2Y=C X+C Z+ν                            (24) 

Where 

T

1 2 3 4 5 6X=(x x x x x x )                  (25) 

T

7 8Z=(x x )                               (26) 

The standard singular perturbation form of (22) and (23) is 
then given by: 

11 12 1 1X=A X+A Z+B U+L W                    (27) 

21 22 2 2εZ=A X+A Z+B U+L W                   (28) 

Where 

21 22 2 2

21 22 2 2

A A B Lˆ ˆ ˆ ˆA = , A = , B = , L =
ε ε ε ε

      (29) 

And ε is the singular perturbation parameter. Applying the 
standard singular perturbation approach to decouple the slow-
fast subsystems, the slow and the fast dynamics is obtained [1]. 

 

A. The Slow Subsystem 

s s s s s s
X =A X +B U +L W                      (30) 

s s s s s s
Y =C X +D U +E W+ν                      (31) 

0

s
X (0)=X                                 (32) 

-1

s 11 12 22 21
A =A -A A A                          (33) 

-1

s 1 12 22 2
B =B -A A B                           (34) 

-1

s 1 12 22 2
L =L -A A L                           (35) 

-1

s 1 2 22 21
C =C -C A A                          (36) 

-1

s 2 22 2
D =-C A B                            (37) 

-1

s 2 22 2
E =-C A L                            (38) 

 
The performance index Js associated with slow subsystem 

is defined: 
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The control signal for the slow subsystem is: 

s s s
ˆU =G X                                (40) 

Where X̂
s

 is the optimal estimated slow state Xs
 provided 

by the slow Kalman filter: 

s s s s s S s s s s
ˆ ˆ ˆX =A X +B U +L [Y-D U -C X ]              (41)     

The filter gain Ls is: 

T T -1

s s s s s s
L =(P C +L E )V

                            
 (42)     

And Ps is the stabilizing solution of the slow algebraic 
Riccatti equation: 

t -1 t -1 t

s s s s s s s s s s s s

t -1 T t -1

s s s s s s s s s s

[A -L E V C ]P +P [A -L E V C ]
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                 (43) 

Where 

t

s s sV =V+E E                            (44) 

 

B. The Fast Subsystem 

f 22 f 2 f 2

ˆ ˆεZ =A Z +B U +L w                      (45) 

The performance index  Jf  is: 
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1
J =E{ Z QZ +Z NU +U RU dt}

2



             (46) 

The feedback control signal for fast sub-system is given by: 

f f f
ˆU =G Z                              (47) 

Where 
f

Ẑ  is the optimal estimated fast state (
fZ ), provided 

by the fast Kalman filter: 

22 2 f f f 2
ˆ ˆ ˆεZ=A Z +B U +L [Y -C Z]                 (48) 

The filter gain Lf is: 

T -1

f f 2
L =P C V                          (49) 

And fP  is the stabilizing solution of the fast algebraic 

Riccatti equation 

t -1

22 f f 22 2 2 f 2 2 f
A P +P A +L WL -P C V C P 0           

(50) 

The composite control signal is the sum of the slow and fast 
control signals 

c s f s f

ˆ ˆU =U +U =G X+G Z
                     

(51) 

If Uc applied to the system the resulting performance index 
Jc is near optimal in the sense  

c s f oJ =J +J =J                         (52) 

Where Jo is the optimal value of the performance index. 
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V. APPLICATION ON A MISSILE AUTOPILOT 

The slow-fast controller design presented in section 4 is 
now applied to the missile autopilot model in section 2. The A, 
B and C matrices of missile state space model and consonant 
matrices Q and R of cost function are given bellow. 

  Q diag 100,100,100, 0,1e 8,1e 8, 2e1, 2e16         (52) 

  R 1e10 diag 1,1,1                         (53) 

-1.3220 0.0640 0 0 0 0 1 0

    0 -1.89 0 0 0 0 0 -1

    0 0 -2.6784 0.6646 -0.7333 0.1315 0 0

    0 0 -0.0254 -2.4764 -0.0319 -0.0620 0 0
A=

    0 0 0 0 -1.2 0 0 0

    0 0 0 0 0 -20.2257 0 0

    0 0 0 57.2958 0 0 -1 0

    0 0 0 0 0 0 0 -20.2256

 
 
 
 
 
 
 
 
 
 
 
  

 

 

 0 -1.758 0 0 0 0 0 0 0 0 0

 0 0 -0.6 0 0 0 0 0 0 0 0

 1.1 0 0 0 0 0 -1 0 0 1.1 0

  0 -5 0 0 0 0 -2.457 0 0.8 0 0
B= C

 -10.2 0 0 0 0 0 1.5795 0 -1.5 -2.4 0

  0 -10.2 0

  -1 0 0

    0 1 0



 
 
 
 
 
 
 
 
 
 
 
  

1 0 0 0.3787 0 0 -1 0

0 1 0 -0.11 0 0 6.89 0

0 0 1 4.78 0 0 -2.3688 0

 
 
 
 
 
 
 
 
 
 
 
  

 

 

In order to observe the performance of each of the above 
controllers in the presence of external disturbances, a command 
is considered. Such a particular disturbance simulates both the 
slow and the fast modes in the system. In addition, a white 
noise signal with a power spectral density has been selected as 
a disturbance signal to model the missile motor vibrations. 

The outputs are important in LQG controller design, since 
in such a design, by using the optimal estimator, the 
measurable output must provide a good and proper estimate for 
the modes (x1, x2, x3, x4). Computing the controller gain 
matrix (20) for the standard LQG design, we get: 

[4.2354, 0.1553, 0, 0, 1.2186,11.2196;

0, 0.7523, 0, 21.1891, 0, 0;

0,10.1584, 0, 0, 0.9421, 2.8854;

15.1457, 4.4423, 0, 4.7126, 0.0814, 8.7309;

9.0842, 0.1823, 0, 6.5025,17.5508, 8.1795;

7.5104, 0, 3.6033, 0, 0, 1.1214;

0

k
L  

 

 

 



, 0, 0.2865, 17.6435, 5.9048, 0.7746;

14.3092,18.4517, 0, 0.4906, 7.8261, 9.3928]





 

 

In order to apply the singular perturbation theory, first, let’s 
check the two-time-scale property of the system. The singular 
perturbation parameter   is computed: 

s fmax min
λ / λ 0.1365                     (54) 

The calculations of the controller gains matrices using the 
singular perturbation theory for both the slow and the fast 
subsystems result in the following: 

[ 12.2616, 5.2442,1.2827, 3.9372, 0.4383, 7.3291;

8.6779, 3.5593,14.4463, 8.2021, 0, 0.4739;

0.3609, 10.1870, 1.9327, 5.5115,19.8197, 0.0885; (55)

1.5661,13.2775, 0,1.4807, 3.9281,15.0304;

10.9428, 2.0483,1.6014

s
k

L   



  

, 9.8064, 0.4126, 11.6858;

5.0124, 4.4812, 2.9671, 0.4581,11.1611, 0.5003]





 

[ 6.7189,12.6661, 0.0322,1.2769, 8.0741, 2.5609;

3.3590, 0.4014,17.8586, 2.3510, 13.7015, 0.9777]

f
k

L  


    (56) 

  

Design of the controller using the two-time scale method 
entails cost increase that is negligible, and clearly justifies the 
utilization of this approach. The simulation results of both 
design approaches are compared graphically. Fig. 2 shows the 
real and estimated states of full order missile autopilot, and fig. 
3 shows the real and estimated states of reduced order system 
using two-time scale method, also fig. 4 to fig. 11 shows 
response of both systems that is too close to each other 
separately and shows the efficiency of this work. 

Although we use an 8 degree of freedom missile model in 
this work, but using two-time scale method for expanded 
problem with further dimensions can give better and greater 
advantages. 
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Fig. 2: Real and estimated (full order) 

 

 

 

 

 

Fig 3: Real and estimated (reduced order) 

 

 

Fig 4: Angle of attack response (full order) 

 

 

Fig 5: Pitch rate (full order) 

 

 

Fig 6: Fin deflection (full order) 
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Fig 7: Acceleration (full order) 

 

 

Fig 8: Angle of attack (reduced order) 

 

 

Fig 9: Pitch rate (reduced order) 

 

Fig 10: Fin deflection (reduced order) 

 

 

Fig 11: Acceleration (reduced order) 

 

VI. CONCLUSION 

The model of a missile autopilot can be put in two-time 
scale form to design LQG controller. The responses were 
concluding by using observer with good match between full 
and reduced systems. In spite of the simplified structure of 
these strategies, the resulting missile autopilot performance is 
comparable to the performance with the full order feedback 
design. 
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