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Abstract- Neural networks were used to minimize the amount 
of data required to predict the aerodynamic coefficients of an 
airfoil oscillating in plunging motion. For this purpose, series 
of experimental tests have been conducted on a section of a 
660kw wind turbine blade. Two MLP (multi layer perceptron) 
and GRNN (general regression neural network) were trained 
using experimental data of the airfoil at various conditions. 
Results showed that with using only 50% of the acquired data, 
the trained neural networks were able to predict accurate 
results with minimal errors when compared with the 
corresponding measured values. Moreover, these methods can 
predict the aerodynamic coefficients of the plunging airfoil at 
different oscillation frequencies, amplitudes, and incidence 
angles. Therefore with employing this trained networks, the 
aerodynamic coefficients are predicted accurately with 
minimum experimental data; hence reducing the cost of tests 
while achieving acceptable accuracy. 

Keywords- Neural Network; MLP; GRNN; Plunging; Wind 

turbine. 

I.  INTRODUCTION 

The methods for predicting unsteady flows and dynamic 
stall used by the industry are largely based on empirical or 
semi-empirical approaches that are fast and relatively accurate 
where non-linear effects are not too great. Increased 
development in aircraft and wind turbine aerodynamics creates 
demand for more detailed information of the non-linear 
unsteady loads, dynamic response, and aero-elastic stability, 
caused by the dynamic motions, including dynamic stall effects 
[1]. 

Wind turbine or helicopter rotor blade sections encounter 
large time dependent variations in angle of attack as a result of 
control input angles, blade flapping, structural response and 
wake inflow. In addition, the blade sections encounter 
substantial periodic variations in local velocity and sweep 
angle. Thus, unsteady aerodynamic behavior of the blade 
sections must be properly understood to enable accurate 
predictions of the air loads and aero-elastic response of the 
rotor system [2]. Most of the angle of attack changes that the 
rotor blades encounter are due to the variations in flapping and 
elastic bending of the blade, i.e., plunging type forcing [3]. 

In order to reduce measurement points and wind tunnel 
time, neural networks are used for predicting aerodynamic 
coefficients. Neural networks represent a powerful data 
processing technique that has reached maturity and broad 
application and can accurately predict both steady and unsteady 
aerodynamic loads while capturing the essential fluid 
mechanics mathematically. 

The ability of neural networks to accurately learn highly 
nonlinear, multiple input/output relationships makes this a 
promising technique for modeling the aerodynamics test data. 
There has been considerable interest in the aeronautical 
applications of neural networks. Schreck and Faller 
successfully trained a neural network to predict the unsteady 
pressure variations on a pitching wing [4]. Other applications 
have since been reported for characterizing flight test data 
[5,6]. 

In this study extensive low speed wind tunnel tests were 
conducted to study the unsteady aerodynamic behavior of an 
airfoil sinusoidally oscillating in plunge. The experiments 
involved measuring the surface pressure distribution over a 
range of amplitudes and oscillating frequencies at three 
different mean angles of attack of 5º, 10º and 18º. For all 
oscillation cases, Reynolds number was fixed at of 0.42×10

6
. 

The unsteady aerodynamic loads were calculated from the 
surface pressure measurements, 64 ports, along the chord for 
both upper and lower surfaces of the model [7]. The plunging 
displacements were transformed into the equivalent angle of 
attack. Note that in a plunging motion, the model moves 
vertically up and down inside the tunnel test section. The 
neural network was used to increase the resolution of 
observation to predict the aerodynamic coefficients at various 
conditions.   

II. EXPERIMENTAL APPARATUS 

All experiments were conducted in the low speed wind tunnel 

in Iran. It is a closed circuit tunnel with rectangular test section 

of 80×80×200cm
3
. The test section speed varies continuously 

from 10 to 100 m/sec, at Reynolds number of up to 5.26×10
6 

per meter. The model considered in the present study has 25cm 

chord and 80cm span and is the critical section of a 660kW 

wind turbine blade. This model is equipped with 64 pressure 
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orifices on its upper and lower surfaces. The pressure ports are 

located along the chord at an angle of 20 degrees with respect 

to the model span to minimize disturbances from the upstream 

taps, Fig. 1.  

Data were obtained using sensitive pressure transducers. 
Each transducer data was collected via a terminal board and 
transformed to the computer through a 64 channel, 12-bit 
Analog-to-Digital (A/D) board capable of an acquisition rate 
of up to 500 kHz. Dynamic oscillatory data presented here are 
an average of several cycles at a sample rate based on the 
oscillation frequency. Raw data were then digitally filtered 
using a low-pass filtering routine. The oscillation amplitude 

was varied sinusoidally as )sin( thh  , where ω is angular 

velocity and h  is the amplitude of motion. The plunging 

displacement was transformed into the equivalent angle of 
attack using the potential flow transformation formula, 

hikeq  , where eq  is in radians and h  has been 

nondimensionalized with respect to the model semi-chord. The 
mean angle of attack was, of course, added to the equivalent 
angle of attack [8]. 

 

III. NETWORKS ARCHITECTURE 

The artificial neural networks algorithm have been 
developed using aerodynamic coefficients of the airfoil at 
certain conditions, from experimental data. The networks use 
this information as their training data and their weights were 
adjusted to minimize the error between the predicted results 
and the experimental data. Then, once the desired accuracy has 
been achieved, the trained network was used to predict the 
aerodynamic coefficients at different conditions. Two MLP 
and GRNN networks were trained. These networks, after 
training, use instantaneous angles of attack for both upstroke 
and down stroke motions with certain frequency and amplitude 
of oscillation as inputs while their outputs are the aerodynamic 
coefficients at the related angles of attack. 

  The MLP network is of type "cascade-forward back 
propagation network" which consists of 2 hidden layers and 3 
neurons using "tansig" and "satline" activation functions. 
Training methodology was the Levenberg-Marquardt 
algorithm, which is an implementation of a quasi-Newton 
method, with variable learning rate.  This algorithm ensures 
convergence, as in the steepest descent method, and has good 
performance, as does the Gauss-Newton algorithm. 

IV. RESULTS AND DISCUSSIONS 

The unsteady aerodynamic loads were calculated from the 
surface pressure measurements, 64 ports, along the chord for 
both upper and lower surfaces of the model. The unsteady lift 
coefficients are shown for three different mean angles of attack 
of 5, 10, and 18 degrees and for reduced frequencies of 0.03, 
0.045, and 0.06 for constant plunging amplitude of ±15cm. An 
arrow gives the direction of each loop. The corresponding 
static values are shown for comparison.  

Figure 2 shows variations of cl with the equivalent angle of 
attack for three different mean angles of attack. In the linear 

part of the static cl values, Fig. 2a, the slopes of the hysteresis 
loops tend to follow the steady data. The directions of the 
hysteresis loops are counterclockwise for higher reduced 
frequency cases, k=0.045 and 0.06, which means the lift in the 
upstroke curve lags the static data while in the down stroke 
portion it leads the corresponding static values. For the lower 
reduced frequency, k=0.03, however, the hysteresis loop shows 
a "figure eight" shape. This may indicate that there is an 
undershoot of the lift in the upstroke part of the curve at high 
equivalent angles of attack, while at the low equivalent alpha, 
the reverse is true, overshoot. Consequently there is a crossover 
point, the upstroke and down-stroke lift coefficients are the 
same, for a specific induced angle of attack, α=4º. As it is seen 
from Fig. 2a, the effect of increasing the reduced frequency is 
to increase the amplitude of the induced alpha while widening 
the hysteresis loops. Looking at Fig. 2b, it is seen that plunging 
the airfoil near its static stall angle,  11stallstatic , causes 

different trends in the dynamic lift coefficients. At a reduced 
frequency of 0.03, the direction of the loop is clockwise but at 
reduced frequencies of 0.045 and 0.06 the direction of the cl 
hysteresis loops changes from lag to lead with crossover points 
near α=9º for k=0.045 and about α=8º for k=0.06. In this 
region, increasing the reduced frequency induces higher 
maximum lift value and postpones the stall to higher equivalent 
angle of attack. Plunging the airfoil with a mean angle of 18º or 
in the post stall region, causes the hysteresis loops of cl to 
become clockwise for all three reduced frequencies, Fig. 2c. 
This is due to the influence of the different time lags and the 
vortex shedding. As a fact, when oscillating the airfoil with 
lower mean angles, the direction of the hysteresis loops are 
strongly affected by the trailing edge wakes and the lag of 
pressure distribution. However, when oscillating with higher 
incidence, there exist a separated flow region behind the airfoil 
and the moving wall effects along with the vortex shedding 
play an important role in the trends of the loops.   

The neural networks are used to minimize the amount of 
data required to predict the aerodynamic coefficients of the 
airfoil. For training the networks, the input data were included 
of sets of instantaneous angle of attack, reduced frequency, and 
amplitude of motion for each case. Related Aerodynamic 
coefficients were considered for the output ones. The validity 
of the applied method was investigated at several cases to 
ensure its effectiveness to provide desired results with 
permissible error.  

  To ensure that the weights in the neural networks have 
been correctly set and the corresponding outputs are 
sufficiently reliable, a validation process is applied after 
training has been completed. The set of known inputs with 
their desired output needs to be divided into two distinct sets. 
The first set is the training set and is used throughout the 
training period to adjust the weights to the appropriate values.  
The second set is referred to as the validation set and is used to 
test the network.  Once the values of the training set have been 
determined, the inputs from the validation set are inserted into 
the network and the output of the network is compared with the 
target values in the validation set.  

Figure 3 displays comparison between the expected data 
and their predicted ones for the lift coefficient from both 
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GRNN and MLP neural networks. For the GRNN, various 
spread parameters [9], σ, are used. The model is set to an 
incidence angle of 5 degrees and oscillated with a plunging 
amplitude of ±5cm at a frequency of 2.22Hz (k=0.04). For 
training the network, three sets of data, related to various 
amplitudes and frequencies, but with mean angle of attack of 5 
degrees are used. Note that separate networks are used for 
upstroke and down-stroke portions of the hysteresis loops. It is 
seen that there is a good agreement between results of the 
Artificial Neural Networks and the experimental data. It is 
shown that for the GRNN, the spread parameter has an 
important role in predicting the results of this network, Fig. 3a. 
The values of 0.05, 0.5 and 0.9 are selected for the spread 
parameter. It is seen that for the case of σ=0.5, the prediction of 
the network is slightly better than the other values. It can also 
be seen from Fig. 4 that using the value of σ=0.5 has a 
minimum percent of average error. The MLP network shows 
better results than the GRNN, with error of only about 0.02%, 
Fig. 3b. In contrast to the GRNN, two ends of the upstroke and 
down-stroke portions of the hysteresis loop are well predicted 
by the MLP network, Fig. 3b. However, fast training is an 
outstanding characteristic of GRNN which allows engineers to 
deal with time variant systems. The variation of error with 
angle of attack in the GRNN for the case of σ=0.5 is shown in 
Fig. 5. It is seen that the error is higher at two ends. 

In Fig. 6, the model is set to an angle of 10 degrees, the 
oscillation frequency is 3.33Hz and the amplitude of the 
motion is ±5cm. For training the network, four sets of data, 
related to various amplitudes and frequencies, but with the 
same mean angle of attack are used. The results are only for the 
MLP network which shows a good agreement with the 
experimental data. The location of the crossover point 
(mentioned before in Fig. 2) is well also predicted. However, 
the GRNN was poor in predicting this location.  

In Fig. 7, the model is set to an incidence angle of 18 
degrees (post stall region), the oscillation frequency is 2.78Hz 
and the amplitude of motion is ±10cm. The variation of the lift 
coefficient with equivalent angle of attack is shown from both 
GRNN and MLP neural networks and is compared with the 
experiment. It is seen that employing the trained GRNN, the 
lift coefficients are predicted accurately with average errors of 
about 1.7% for both upstroke and down stroke motions of the 
airfoil. It can also be seen from Fig. 8 that using the value of 
0.5 for σ has a minimum percent of average error. Also, the 
results obtained from the MLP network shows high agreement 
with the experiment. 

V. CONCLUDING REMARKS 

Artificial Neural Network was used to predict the 
aerodynamic coefficients of an airfoil oscillating in plunge at 
various conditions. For this purpose, series of experimental 
tests have been developed for a section of a 660kw wind 
turbine blade equipped with 64 pressure transducers along its 
chord. For training the network, input data were sets of 
instantaneous angle of attack, reduced frequency, and 
amplitude of the motion for each case. Related Aerodynamic 
coefficients were considered for the output one. The validity of 
the applied methods was investigated at several cases to ensure 

their effectiveness to provide desired results with permissible 
error.  Results show that with employing these trained GRNN 
and MLP networks the aerodynamic coefficients are predicted 
accurately with minimum experimental data; hence reducing 
the cost of tests while achieving acceptable accuracy. 

 

 

 

 

Figure 1.  Airfoil model and the location of the pressure ports. 

 

a)  50  
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a) 100  

 

a) 180  

Figure 2.  Variation of lift coefficient with equivalent angle of attack 

 

a) GRNN  

 

b) MLP network 

Figure 3.  Comparison between experimental and Artificial Neural Network 

results,  50 . 
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Figure 4.  Variation of error with spread parameter, σ in GRNN,  50 . 

 

Figure 5.  Variation of error with angle of attack in GRNN, σ=0.5,  50 . 
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Figure 6.  Comparison between experimental and MLP network results, 

100 . 

 

a) GRNN 

 
b) MLP network  

Figure 7.  Comparison between experimental and Artificial Neural Network 

results, 180 .
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Figure 8.  Variation of error with spread parameter, σ in GRNN, 180 .  
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