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Abstract- In this paper, free vibrations of large repetitive
regular planar and space trusses are considered. For this kind
of structures the corresponding stiffness and mass matrices
have tri-diagonal block and in the canonical form,
K=F(B,AB") and M=G(0,D,0), which simplifies their
Eigen frequencies. Practical large space and planar trusses
contains with repetitive units, known as their substructures,
have structural matrices in the presented canonical form K and
M. Here, an efficient method is presented for free vibration of
this type of structures. Examples are included to show the
accuracy of the presented approach.
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I.  INTRODUCTION

Many engineering problems require the calculation of the
eigenvalues and eigenvectors of matrices. As an example, the
eigenvalues correspond to natural frequencies in vibration
systems and buckling loads in the stability analysis of
structures [1-3]. In order to calculate the eigenvalues of a
matrix, the characteristic equation of the matrix should be
formed and the corresponding equation of order n should be
solved. Solution of this equation for a large n is not only
difficult but also it is often accompanied by some errors. In the
past decade canonical forms are developed and used for Eigen
solution of bi-lateral symmetric structures [4-5]. Other
canonical forms consist of block tri-diagonal and block penta-
diagonal matrices arising from more general symmetries and
regular structures [6]. For tri-diagonal cases the corresponding
matrices have often the form M=F(B,A,B), and the

eigenvalues of these problems can be simplified using special
decomposition methods [7,8]. In this paper, considering the
properties of the matrices of the form M=F(B,AB"), a

special method is developed to simplify the calculations. This
can be used in combinatorial optimization problems such as
ordering and partitioning of graph models using Fiedler vector
[9], and it can also be employed in stability and dynamic
analyses of repetitive space structures and finite element

models. In the present method, the structure is decomposed
into repeated substructures and the solution for static analysis
is obtained partially, and the problem of finding the Eigen
frequencies of the main structures is transformed into
calculating those of their special repeating substructures.

Il. FREE VIBRATION OF STRUCTURES

The equilibrium equations of motion for a freely vibrating for
un-damped system can be in the form:

MU+ KU = 0. (1)

Here M is the mass and K is the stiffness matrix of the system.
The problem of vibration analysis consists of determining the
conditions under which the equilibrium condition expressed
by Eqg. (1) will be satisfied.

If we assume

U(t) = U sin(et + 6). (2)
In this expression G represents the shape of the system
(which does not change with time; only the amplitude varies)

and @ is a phase angle. When the second time derivative of
Eq. (2) is taken, the accelerations in free vibration are

U(t) = 02U sin(t + 6) = —°U, )
Substituting Esg. (2) and (3) into Eq. (1) gives
— &°MU sin(et + ) + UK sinet + 6) = 0, @)

This (since the sine term is arbitrary and may be omitted) may
be written:

(K — 0°M)U = 0. (5)

Equation (5) is one way of expressing what is called an

eigenvalue or characteristic value problem. The quantities *
are the eigenvalues or characteristic values indicating the
square of the free vibration frequencies, while the
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corresponding  displacement vectors U  express the
corresponding shapes of the vibrating system, Known as the
eigenvectors or mode shapes. Hence a nontrivial solution is
possible only when the denominator determinant vanishes. In
other words, finite amplitude free vibrations are possible only
when

det(K — w>M) = 0. (6)

Equation (6) is called the frequency equation of the system.
Expanding the determinant will give an algebraic equation of

the n th degree in the frequency parameter a)2 for a system
having n degrees of freedom. The n roots of this equation

(wlza)gwg a)nz) represent the frequencies of the N modes

of vibration which are possible in the system.

1. BLOCK TRI-DIAGONAL MATRICES AND
THEIR SOLUTION FOR FREE VIBRATION
OF TRUSSES

Consider the following block diagonal canonical form:

T
K(n*m)(n*m) = F(B(m*m)'A(m*m)'B(mm))' (7)
M(n*m)(n*m) = F(O(m*m)*c(m*m) *O(mm))* (8)

Where we have n blocks on the diagonal as shown in Eq. (9)
and K is the stiffness matrix of a planar or space truss and M
is the lumped mass matrix. We assume n to be a large number.

T
Amm Brem T
Bom  Am*m  Bmm
- T
K= Brrm  Am*m  Bmm (9)
T
Biom  Am*m  Bm*m
Brem  Amsm (n*m)(n*m)
Crrm
C %
— m*m
M= (10)

Crrm (n*m)(n*m)

For calculating the Eigen frequencies of system, the equation
(11) should be solved in the following standard form:

Ko = AMp, (11)

And in the developed form we have

B A BT (] ()
B A B' *| o [=aM| g |, (12)
B A B Pn-1 #n-1
B A Pn Pn
or
A-ic  B' o
B A-iC B o
B A-ic B * e |=0 (13)
B A-ic B n-1

Boj_» +(A—/1C)(pi_1+BT(pi =0 —-i-1

(14)
Boj_q +(A-AC)y; + BT Pig =0 i

Using the above set of equations we have:
From the (i-1)th row of Eq. (14) we consider

B:a, (pi;l=ﬂ. (15)

Pi-1 Pi
and from the ith row of Eq. (14) we define:

i1 _ ’, A . (16)

Pi Pil

The values of «, ,y,17 can easily be formed, and since the
matrix is considered to have high dimension, therefore we can
accept the following approximation:

azy=p=n, @an

Suppose

a;y:ﬂ;n;elg. (18)

Considering Eg. (17) and Eq. (18) we have

M:eié” i _ o (19)
P Piv1
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i0 -6
Pia=¢ % =t 4 (20)

Substituting Eq. (18) in the i th row of Eq. (12) leads to

eingoi +(A-AC)p; +e7igBqui =0 (21)

@B+ Aa+e B )y = aCh. (22)

Equation (22) shows that the Eigen frequencies of the matrix
M can be obtained from the eigenvalues of

(eiHB+A+e_mBT) and C, (i.e. in terms of n diagonal

blocks). Using e—'g =cos@ +ising simplifies Eq. (22) as
U detfA + cos(@)* B + BT ) +i*sin@)* (B BT )~ AC] =0, § =~ (23)
j=1 n+1

Using the above relationship the solution of large matrices
becomes possible using the properties of its small blocks.
IV. NUMERICAL EXAMPLES

Example 1: As a first example consider the following
practical planar truss which showed in Figure 1.

Ma, My
2 Core of truss. 2 2
Ma, Mz
Link members

1
Figure 1. Planar truss and its cores, link members and assigned masses

In this example modules of elasticity of the truss elements is
£ _oxo0 k0 and area of elements A=76 cm?. The stiffness and
cm?

mass matrices of planar truss can be written as

8692087 0 0 0 0 0
0 5973020 0 5066667 O 0
Al 0 0 12317490 0 0 0
0 -5066667 0 11946039 0  -5066667
0 0 0 0 8692078 0
0 0 0 -5066667 0 5973020
-253333 0 1812706 9063529 O 0
0 0 9063529 -453176 0 0
g _| 1812706 -906353 2533338 0 1812706 9063529
-906353 -453176 0 0 9063529 -—453176
0 0 -1812706 -906353 2533333 0

0 0 -906353 -453176 0 0

: L : : : : L : :
0 10 20 30 40 50 60 70 80 9 100
nz = 826

Figure 1 Pattern of stiffness matrix of truss

Assigned mass for each joint in x and y directions are
myy = Mg, =1000, Moy = 2000 and

kg f .sec2

My = Mgy =2000m,, = 4000

y m

Eigenfrequencies calculated by exact and present method and
compared it table (1) and figure (2) respectively.

Table (1), comparison of 10 last frequencies of truss

Agxs Bers Ceg -
T Ten last frequencies of truss
Bgxs Agc Bevs Cexs
K= - . Borg M= . Exact method Present method
gl A Con 55.836 55.841
66 66 Jioz08 &6 10108 56.831 56.846
57.786 57.794
My 57.955 57.958
myy 58.477 58.480
Moy 58.895 58.896
s Moy 59.728 59.730
may 61.130 61.131
may 62.142 62.142
62.753 62.754
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Figure 2. Comparison of the frequencies of the truss using the present method
with 18 repeated substructure, and the exact approach

Example 2: As another practical example, consider the space
structures illustrated in Figure 3.

1000

0 200 400 600 800 1000
nz = 15132

Figure 4. Pattern of stiffness matrix of the space structures

In this example for each joint considered mass are

2
kg ¢ .sec
My =My =m; =1000 -

Eigenfrequences calculated by exact and present method and
compared in table (2) and figure (5) respectively.

Table (2) Comparison of frequencies of truss

Comparison of frequencies
Ten first Ten middle .
frequencies frequencies Ten last frequencies
Exact present Exact present Exact present
method method method method method method
) 3.9947 | 3.7742 | 74.8220 | 74.9324 | 112.4900 | 112.4923
Figure 3. A space structures 53044 | 45196 | 74.8850 | 74.9906 | 112.5500 | 1125173
7.7962 | 6.5974 | 75.1050 | 75.0236 | 112.5700 | 112.5768
In this example also modules of elasticity of the truss elements 8.9903 | 8.8962 | 75.1510 | 75.1257 | 112.5900 | 112.5823
IS £ _ %105 k9 and area of elements A=76 cm? . The stiffness 92318 | 91781 | 751770 | 75.1339 | 1126200 | 112.7394
= om? 9.6131 | 9.2067 | 75.2340 | 75.2526 | 112.7500 | 112.7655
and mass matrices of p|anar truss can be Written as 11.0540 9.7191 75.2390 75.2560 113.1800 113.1847
11.1190 | 10.3477 | 75.2960 | 75.3791 | 113.2600 | 113.2597
Aszss Beag 11.3680 | 11.2229 | 75.3150 | 75.4000 | 113.6600 | 113.6633
« _| Bowes Aees Boaes 13.6180 | 12.5265 | 75.3470 | 75.4020 | 113.7300 | 113.7326
B33
Bg363 A63+63.J11341134
1000
Ce3+63 1000
M= Co363 c- 1000
Co363 1341134 1000
1000 6363
The pattern of the stiffness matrix for space truss shown in
Figure 3 is illustrated in Figure 4.
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Figure 5. Comparison of the frequencies of the truss using the present method
and the exact approach

V. CONCLUDIND REMARKS

In this paper, a simple method is presented for calculating the
Eigen-frequencies of large structural matrices of the form
M=F(B,A,B"). Examples are solved and the results are

compared to exact solutions. The eigenvalues are very close to
the exact values, and can efficiently be used for solution of the
models whose structural matrices are or can be transformed
into the block tri-diagonal form M=F(B,A,B"). The

application is by no means limited to dynamic analyses of
different types of repetitive structures. This method can also
be considered as powerful tool for iterative methods. By using
this method one can does shape approximate a structure and
use its result for initial values in iterative methods for
improved results. The present method can also be used for
pre-conditioning of matrices for fast convergence of in
iterative methods.
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