

79

International Journal of

Science and Engineering Investigations vol. 1, issue 2, March 2012

Survey of Effective Web Cache Algorithm

Vinit A. Kakde
1
, Prof. Sanjay K.Mishra

 2
, Prof. Amit Sinhal

3
 ,Mahendra S. Mahalle

4

1
M.Tech(IT),TIT, Bhopal

2
Assistant Lecturer, Department of IT, TIT ,Bhopal

3
Professor, Dept. of CSE, TIT, Bhopal

4
M.E.(CSE), SIPNA COE, AMRAVATI

(1vinit.kakde@gmail.com, 2sanjaymishra2006@gmail.com, 3amit_sinhal@rediffmail.com, 4mahalle.mahendra85@gmail.com)

Abstract- The increasing demand for World Wide Web
(WWW) services has made document caching a necessity to
decrease download times and reduce Internet traffic. To make
effective use of caching, an informative decision has to be
made as to which documents are to be evicted from the cache
in case of cache saturation. This is particularly important in a
wireless network, where the size of the client cache at the
mobile terminal (MT) is small. Several types of caching are
used over the Internet, including client caching, server caching,
and more recently, proxy caching. In this article we review
some of the well known proxy-caching policies for the Web.

We describe these policies, show how they operate, and
discuss the main traffic properties they incorporate in their
design. We argue that a good caching policy adapts itself to
changes in Web workload characteristics. We make a
qualitative comparison between these policies after classifying
them according to the traffic properties they consider in their
designs.

Keywords- Web Cached;Hit Ratio;Replacement policies.

I. INTRODUCTION

The World Wide Web has become one of the

predominant services to distribute various kinds of

information. With the explosive growth of the World Wide

Web, web caching has become an important technique to

improve network performance. Due to the limited cache space,

it is impossible to store all the web objects in the cache. As a

result, cache replacement algorithms are used to determine a

suitable subset of web objects to be removed from the cache to

make room for a new web object. An overview of web

caching replacement algorithms can be found in. However, the

improvement of network performance, such as access latency

reduction achieved by caching web objects, does not come

completely for free. In particular, maintaining the content

consistency with the primary servers generates extra requests.

Many web cache implementations depend on some

consistency algorithms to ensure a suitable form of

consistency for the cached objects.
The Web documents are cached either directly by the

browser or by a proxy server which is located close to the
clients. Cache replacement algorithms, which dynamically
select a suitable subset of documents for eviction from the
cache, play a central role in the design of any caching
component; these algorithms have been extensively studied in
the context of operating system virtual memory management
and database buffer management. Cache replacement
algorithms usually maximize the cache hit ratio by attempting
to cache the data items which are most likely to be referenced
in the future. Since the future data reference pattern is typically
difficult to predict, a common approach is to extrapolate from
the past by caching the data items which were referenced most
frequently. This approach is exemplified by, e.g., the LRU and
LFU cache replacement algorithms. In addition to maximizing
the cache hit ratio, a cache replacement algorithm for Web
documents should also minimize the cost of cache misses, i.e.,
the delays caused by fetching documents not found in the
cache. Clearly, the documents which took a long time to fetch
should be preferentially retained in the cache. For example,
consider a proxy cache at Nagpur University. The cache
replacement algorithm at the proxy found two possible
candidates for replacement. Both documents have the same
size and are referenced with the same rate, but one document
originates from the University of RGPV while the other is from
SGBAU University. The cache replacement algorithm should
select for replacement the document from the University of
RGPV and retain the document from SGBAU University
because upon a cache miss the former can be fetched much
faster than the latter.

II. RELATED WORK

Figure 2.1 shows generalized web cache architecture in
web caching if the client is requesting a page from server it will
fetch from the server and will give response to the server. A
web cache sits between web server and a client and watches
request for web pages. It caches web documents for serving
previously retrieved pages when it receives a request for them.

International Journal of Science and Engineering Investigations, Volume 1, Issue 1, February 2012 80

www.IJSEI.com Paper ID: 10212-16

Figure 1: Generalized Web Cache Architecture

A number of caching policies have been proposed in an
attempt to minimize several cost metrics such as hit ratio, byte
hit ratio, average latency and total. A good survey that
describes several cache replacement polices can be found in
.This survey classifies cache replacement policies into
categories. The focus of our work is on evaluating cache
replacement policies that aims at improving cache hit ratio,
which is the most general metric to evaluate the performance of
a caching system.

III. EVALUATION METHODOLOGY

This section discusses our methodology. The

performance metrics used in our evaluation are discussed in

Section A Section Section B presents the caching system

simulator used in our analysis.

A. Performance Matrics

Since we are interested in evaluating periods of poor

and good performance we measure several metrics over time.

This analysis allows us to detect periods of variations of

performance and to investigate the factors that cause these

variations. Each metric was measured in different time scales.

The metrics used in our performance evaluation are:

Hit Ratio - The effectiveness of a caching policy can be

measured by its hit ratio (the percentage of requests satisfied

by the cache). The hit ratio of each time interval considers

only the requests of the analyzed interval; however the

workload imposed to the cache contains re-quests of all the

past intervals.

Maximal Improvement -We evaluate the maximum hit ratio

a new caching replacement policy can improve over the

simple LRU policy. In order to define the maximal

improvement, we first define as the percentage of first timers

on a given interval. Moreover, let be the hit ratio on when the

LRU is the current cache replacement policy used by the

caching system. We define the Maximal Improvement as

follows: As expected, the maximal improvement is measured

for each time interval, considering only the requests of current

interval. This metric can be understood as: the maximum hit

ratio (100%) minus the hit ratio of a given replacement policy

(we choose LRU for simplicity) minus the percentage of

objects that appeared for the first time on trace. The result is

the potential hit ratio that another replacement cache policy

could obtain over LRU.

B. Caching System Simulator

Since the goal of the experiments is not to analyze

cache replacement policies, but to evaluate the maximal

improvement that can be applied to caching system and

understand the main reasons for variations on cache

performance over time, we developed a simulator that

assumes the simple LRU policy. We use a cache size of 10%

of the number of distinct objects in each trace. The results for

the other values of cache sizes are equivalent, considering that

for large cache sizes, almost all objects are kept in cache

which increases hit ratio.

IV. CACHING REPLACEMENT POLICIES

Cache replacement policy plays an extremely important
role in web caching. Hence, the design of efficient cache
replacement algorithms is required to achieve highly
sophisticated caching mechanism. In general, cache
replacement algorithms are also called web caching algorithms.
As cache size is limited, a cache replacement policy is needed
to handle the cache content. If the cache is full when an object
needs to be stored, the replacement policy will determine
which object is to be evicted to allow space for the new object.
The optimal replacement policy aims to make the best use of
available cache space, to improve cache hit rates, and to reduce
loads on the origin server. The different page replacement
policies are as follows:

A. Least Recently Used(LRU) Page Replacement Policy

The simplest and most common cache management
approach is Least-Recently Used (LRU) algorithm, which
removes the least recently accessed objects until there is
sufficient space for the new objects.

Figure 2: Example of LRU page replacement policy

International Journal of Science and Engineering Investigations, Volume 1, Issue 1, February 2012 81

www.IJSEI.com Paper ID: 10212-16

LRU is easy to implement and proficient for uniform size
objects, like in the memory cache. However, it does not
perform well in web caching since it does not consider the size
or the download latency of objects. This algorithm exploits the
temporal locality of the user's accesses, and it is very simple to
implement because the eviction mechanism requires only the
access time-stamp.

B. Least Frequently Used (LFU) Page Replacement Policy

It is another common web caching that replaces the object
with the least number of accesses.

Figure 3: Example of LFU page replacement policy

LFU keeps more popular web objects and evicts rarely used
ones. However, One potential drawback of LFU is that some
objects may accumulate large reference counts and never
become candidates for replacement, even if these objects are no
longer in the active set (i.e., the cache could become polluted
with inactive objects).

Figure 4: Example of MRU page replacement policy

C. Most RecentlyUsed (MRU) Page Replacement Policy

The MRU is also called as fetched and discard policy.
MRU algorithm removes the most recently used resource first.
As shown in figure 4.3 the pages are drop from head in the
queue which maintains the list of older web pages. MRU
works contrast to LRU policy. The algorithm is the best choice

when access of resources is highly unpredictable. MRU policy
is most often used where historical information is to be
accessed.

D. Segmented LRU(SLRU)Page Replacement Policy

To alleviate the web object pollution problem The
Segmented LRU (SLRU) policy designed and it is use in a
disk cache we include it in this study because it considers both
frequency and regency of reference when making a
replacement decision. The SLRU policy partitions the cache
into two segments: an unprotected segment and a protected
segment (reserved for popular objects). On the initial request
for an object, the object is added to the unprotected segment.
When a cache hit occurs, the object is moved to the protected
segment. Both segments are managed with the LRU policy.
However, only objects in the unprotected segment are eligible
for replacement. This allows the once popular objects to remain
in the cache for a longer period of time in case they regain their
popularity. If space is needed to add these objects, the least
recently used objects in the unprotected segment are removed.
This policy requires one parameter, which determines what
percentage of the cache space to allocate to the protected
segment. The SLRU policy performs best when a balance is
found that allows for popular objects to be retained for long
periods of time without becoming susceptible to pollution.

V. CONCLUSION

This paper provides a study about the viability of
deployment of new caching replacement policies. We analyze
whether new caching replacement policies can significantly
improve a cache system performance and the main
characteristics that cause poor and good performance in
caching systems. The enormous raise of the traffic in the
internet due to the exponential augmentation of user’s
interactions with web servers is generating a lot of blockages.
As a corollary, users frequently experience high delay when
access these web pages and even more aborting or resetting
connection with real-time web applications, such as online
flight booking, online banking amongst others. This topic finds
the elucidation to this predicament with the prologue of and
web cache. The study is made on different types of page
replacement policies in cache system and the comparative
study is made between them. After performing the
experimentation on real-time application experimental results
have revealed that the proposed approach can improve the
performance of hit ratio (HR). The cache replacement
algorithms are implemented to reduce the response time of the
user. The existing algorithms are being studied and the
improvements in the algorithms are being proposed.

REFERENCES

[1] NLANR. National Laboratory for Applied Network Research (NLANR)
http://www.nlanr.net.

International Journal of Science and Engineering Investigations, Volume 1, Issue 1, February 2012 82

www.IJSEI.com Paper ID: 10212-16

[2] V. Almeida, A. Bestavros, M. Crovella, and A. Oliveira. Characterizing
Reference Locality in the WWW. In Proc.of PDIS, December 1996.

[3] A. Bestavros, R. Carter,M. Crovella, C. Cunha, A. Heddaya, and S.
Mirdad. Application-Level Document Caching in the Internet. In Proc.
IEEE SDNE, 1995.

[4] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web Caching
and Zipf-like Distributions: Evidence and Implications.In Proc. of
IEEE Infocom, April 1999.

[5] S. Jin, A. Bestavros. GreedyDual* Web Caching Algorithm: Exploiting
the Two Sources of Temporal Locality in Web Request Streams,
Technical Report of Boston University, 1999- 009, August 21, April 4,
2000.

[6] P.Lorensetti, L.Rizzo, L.Vicisano. Replacement Policies for Proxy
Cache.Manuscript, 1997.

[7] S.Williams, M.Abrams, C.Stanbridge, G.Abdulla, E.Fox: Removal
Policies in Network Caches for World-Wide Web Documents. In
Proceedings of the ACM Sigcomm96,August,1996, Stanford University.

[8] E. O’Neil, P. O’Neil, and G. Weikum, “The lruk Page Replacement
Algorithm for Database Disk Buffering,” Proc. ACM SIGMOD
Int’l.Conf.Management of Data, Washington, D.C., USA, May 1993, pp.
297–306.

[9] C. Cunha, A. Bestavros, and M. Crovella, “Characteristics of WWW
Client-Based Traces,” IEEE/ACM Trans. Net., vol. 1, no.3, Jan 1999, pp.
134–233.

[10] N. Niclausse, Z. Liu, and P. Nain, “A New Efficient Caching Policy for
the World Wide Web,” Proc. Internet Server Perf.Wksp. (WISP
’98), Madison, WI, USA, June 1998, pp. 119–28.

[11] A. Foong, Y.-H. Hu, and D. Heisey, “Adaptive Web Caching Using
Logistic Regression,” Proc. 1999 IEEE Signal Processing Society
Wksp., Madison, WI, Aug. 1999, pp. 515–24.

[12] A. Tanenbaum, Modern Operating Systems, Prentice Hall, Inc, 1992.

[13] Measurement and Analysis Web Page Response Time Understanding
and measuring performance test results by Alberto Savoia.

[14] Caching Behaviors of web browser by Dawn Pazych
AccelerationSystem Architecture (ACA) Nov-07.

[15] Web Caching: Optimizing for internet and Web Traffic (White paper).

Vinit A. Kakde received the B.E.degree in
Information Technology from SGBAU University,
Amravati, Maharashtra, in 2007. From He is
currently working toward his M.Tech degree at the
University of RGPV, Bhopal. His research interests
are in theory of computation, traffic analysis,
network systems modeling, and performance
evaluation.

Prof. Amit Sinhal complete his B.E. in
Computer Engineering from NIT Surat in 1996,
M.Tech in Computer Science & Engineering
from SATI Vidisha in 2005 and pursuing Ph.D.
from Rajiv Gandhi
Technical University, Bhopal. He worked in
various reputed software development
companies as Project Lead and University

Institute of Technology, Barkatullah University Bhopal as Assistance
professor. Currently he is working in Technocrats Institute of
Technology, Bhopal as professor in Computer Science Engineering
department.

Prof. Sanjay K. Mishra is-currently working in TIT, Bhopal as
assistant lecturer in Information Technology Department. He is
currently working toward his PhD degree. His research interests are
in network systems modeling and performance evaluation.

Mahendra S. Mahalle received the B.E.degree
in Computer Science & Engineering, from
SGBAU University, Amravati, Maharashtra, in
2008. From He is currently working toward his
M.E degree at the University of SGBAU,
Amravti. His research interests are in Data
communication, database and network analyzer.

