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Abstract- The main purpose of this paper is to submit a new 
numerical approach for the Volterra integral equations based 
on a spectral method. The Chebyshev-collocation spectral 
method is proposed to solve the Volterra integral equations of 
the second kind and then convergence analysis of proposed 
method is discussed. Numerical examples show that the 
approximate solutions have a good degree of accuracy. 
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I.  INTRODUCTION  

This paper consider the second kind Volterra integral 

equations 

 ( )  ∫  (   ) ( )    ( )        [   ]            (   )
 

 

 

Where the source function  ( ) and the kernel function  (   ) 
are given, and   ( ) is the unknown function. 

In order that the solutions of  (   ) be sufficiently smooth, it is 

necessary to use very high-order numerical methods such as 

spectral methods for approximating the solutions. 

For this purpose, we transfer the problem (   ) to an 

equivalent problem defined in [    ] . First using the change 

of variables   
 (   )

 
          

  

   
  the Volterra equation 

(   ) rewrite as follows: 

 ( )  ∫  (
 (   )

 
  )  ( )    ( )      (   )

 (   )  ⁄

 

 

Where  

 ( )   ( 
 

 
(   ))        ( )   ( 

 

 
(   ))     [    ]. 

Now we use the linear transformation    
 (   )

 
     [    ]  

to transfer the integral interval [   (   )  ⁄ ] to the 

interval[    ]. 
Then the equation (   ) become: 

 ( )  ∫  (   ) ( )    ( )           [    ]      (   )
 

  

 

where 

 (   )   
 

 
 (

 

 
(   ) 

 

 
(   )). 

In this paper provide Chebyshev-collocation spectral method 

and its convergence analysis. This method has higher accuracy 

degree relative to Legendre-collocation spectral method. 

This paper is organized as follows: 
In section 2, Chebyshev-collocation spectral method is 

expressed for the Volterra integral equations of second kind . 
In section 3, some useful lemmas for the convergence analysis 
are proposed. In section 4, the convergence analysis in both    
and    spaces is shown. In section 5, numerical results are 
presented to verify the convergence obtained in section 4. 

II. CHEBYSHEV-COLLOCATION METHOD 

We will consider the second kind linear Volterra integral 

equations as: 

 ( )  ∫  (   ) ( )    ( )           [    ]       (   )
 

  

 

Also we consider the (   ) -point collocation points as the 

set of Gauss, or Gauss-Radau, or Gauss-Lobatto points, 

{  }   
 .   

By using these points the equation (   ) can be written as: 

 

 (  )  ∫  (    ) ( )    (  )                     (   )
  

  

 

For calculating the integral, we use Gauss integration formula 

as: 

∫  ( ) ( )   ∑ (

 

   

 

 

  )                                             (   ) 

First we transfer the integral interval to interval [    ], by 

using the following linear transformation: 

   (   )  
   

 
  

   

 
                            (   ) 

Then the equation (   ) is expressed as follows: 

 (  )  
    
 

∫  (    (    )) ( (    )) √   
  ( )  

 

  

  (  )                                        (   ) 
where  ( ) indicates the Chebyshev weight. 

Now by using (   )-point Gauss integration formula we 

get: 
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 (  )  
    
 

∑ (    (     )) ( (     ))√    
   

 

   

  (  )                                       (   ) 

where the set {  }   
 

 coincide with the collocation points 

{  }   
 

 . 

Let  ( (     )) be shown as   , then by using chebyshev 

interpolation polynomials, the expansion   is as:  

 ( )  ∑    ( )                                                                  (   )

 

   

 

where    is the  -th chebyshev basis function and 

  ( )  ∑      ( )                                                             (   )

 

   

 

where 

     
 

  
∑  (  )  (  )    

  (  )   

  
     

 

   

              (   ) 
And  

   
 

 
                                                                  (    ) 

   {
         
         

                                                            (    ) 

   {

 

 
                                          

                                                
           (    ) 

Combining equations (   ) and (   ) yields: 

  

 
    
 

∑  (∑ 

 

   

(    (     ))  ( (     ))√    
   )

 

   

  (  )                                                                       (    ) 
We obtain {  }   

  by solving the above system.  
 

 

III. ERROR ESTIMATES  

Lemma 3.1 . ( [3]. Gauss integration error) 

Assume that a (   )-point Gauss, or Gauss-Radau, or 

Gauss-Lobatto integration formula relative to the Chebyshev 

weight is used to integrate the product    , where     
 ( ) 

with   (    ) for some     and     . Then will exist 

a constant   independent of   such that: 

|∫  ( ) ( ) ( )   (   ) 

 

  

|      | |  
   ( )

‖ ‖   ( )   (   ) 

where 

| |
  
   ( )

 ( ∑ ‖ ( )‖
  
 ( )

 
 )

 

     (     )

   ⁄                        (   ) 

(   )  ∑   (  ) (  )                                                 (   )

 

   

 

 

Lemma 3.2. ( [3], Estimates for the interpolation error ) 

Assume that     
 ( ) and denote        its interpolation 

polynomial in the  (   )-point Gauss, or Gauss-Radau, or 

Gauss-Lobatto points {  }   
 

  , namely, 

    ∑ (  )  ( )                                                              (   )

 

   

 

Then the following estimates are obtained 

‖     ‖   ( )    
  | |

  
   ( )

                                     (   ) 

‖     ‖  ( )    
 
 
  | |

  
   ( )

                                    (   ) 

‖     ‖   ( )    
    | |

  
   ( )

                    (   ) 

 

Lemma 3.3. ( [9] Lebesgue constant for the Chebyshev series ) 

Assume that   ( ) is the  -th Chebyshev interpolation 

polynomials in the Gauss, or Gauss-Radau, or Gauss-Lobatto 

points. Then 

   
   

∑|  ( )|    ( )                                                       (   )

 

   

 

where 

  ( )  
 

 
     

 

 
(     

 

 
)              

 

    
           

 

Lemma 3.4. ( [8], Gronwall inequality ) 

If a non-negative integrable function  ( ) satisfies 

 ( )    ∫  ( )    ( )                           (   )
 

  

 

Where  ( ) is an integrable function, then 

‖ ‖  
 
( )   ‖ ‖  

 
( )                                       (    ) 

 

IV. CONVERGENCE ANALYSIS 

 

In this section, we will investigate the convergence analysis in 

both     and     spaces. 

4.1. Error analysis in    space 

Theorem 4.1. Let   be the exact solution of the Volterra 

equation (   ) and assume that 

 ( )  ∑    ( )                                                               (   )

 

   

 

Where    is given by (    ) and   ( ) is the  -th Chebyshev 

basis function associated with the Gauss-points {  }   
 

 . If 

    
 ( ) and   ( )   ( )   ( ), then for     the 

fallowing formula be obtained: 

‖ ( )‖   ( )      
 (   )   

   
| (   (   ))|

  
   ( )

‖ ‖   ( )

     | |
  
   ( )

 

provided that   is sufficiently large, and   is a constant 

independent of  . 

 

Proof: 

We rewrite the equation (2.1) as follows: 
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∑ (    (     ))  ∑  

 

   

  ( (     ))

 

   

  (  )               (   ) 
Then by using the equation (4.1) is written: 

   
    
 

∑ (    (     ))   ( (     ))   (  )            (   )

 

   

 

From the equation (3.3) we have: 

( (   )  ( ))
   
 ∑ (   (    )) ( (    ))                  (   )

 

   

 

Now the equation (4.2) can be written as: 

   
    
 

( (    )  ( ))     (  )                 (   ) 

We define: 

  ( )  
   

 
∫  (   (   )) ( (   )) ( (   ))  
 

  

 
   

 
( (   )  ( ))                          (   ) 

Then  

  (  )  
    
 

∫  (    (    )) ( (    )) ( (    ))  
 

  

 
    
 

( (    )  ( ))                     (   ) 

Then we have: 
    
 

( (    )  ( ))   

 
    
 

∫  (    (    )) ( (    )) ( (    ))  
 

  

   (  )        
So the equation (4.4) can be written as: 

   
    
 

∫  (    (    )) ( (    )) ( (    ))  
 

  

   (  )   (  )                 
Then  

   
    
 

∫  (    (    )) ( (    )) ( (    ))  
 

  

  (  )    (  )                                        (   ) 
By using the equation (2.4), the equation (4.7) can be written 

as follows: 

   ∫  (    ) ( )    (  )    (  )             (   )
  

  

 

Since 

 ( )   ( )   ( )                                                                  (   ) 
Then the equation (4.8) can be written as: 

   ∫  (    )( ( )   ( ))    (  )    (  )            
  

  

 

Then  

   ∫  (    ) ( )  ∫  (    ) ( )    (  )    (  )             
  

  

   
  

  

 

By multiplying    ( ) in the above equation and summing up 

for         the following equation is obtained: 

∑  

 

   

  ( )  ∑∫  (    ) ( )    
  

  

 

   

  ( )

 ∑∫  (    ) ( )    
  

  

 

   

  ( )

 ∑ (  )  

 

   

  ( )  ∑  (  )  

 

   

  ( ) 

By using the equations (4.1) and (3.4) we have: 

 ( )    (∫  (   ) ( )  )
 

  

   (∫  (   ) ( )  )        (  )      (    )
 

  

 

From the equation (2.1) we have: 

 ( )   ( )  ∫  (   ) ( )  
 

  
. 

Then the equation (4.10) can be written as: 

 ( )    (∫  (   ) ( )  )    ( ( )   ( ))
 

  

       (  )      
Then  

 ( )    (∫  (   ) ( )  )     ( )     ( )
 

  

       (  )     
This equation by using the equation (4.9) can be expressed as 

follows: 

 ( )   ( )    (∫  (   ) ( )  )     ( )     ( )
 

  

       (  )     
Then  

 ( )   ( )    (∫  (   ) ( )  )        (  )    
 

  

 

Then result will be: 

 ( )  (     )( )    (∫  (   ) ( )  )    (  )         (    )
 

  

 

Now we define: 

  ( )     ( )   ( )                                                         (    ) 
And 

  ( )  ∫  (   ) ( )   
 

  

  (∫  (   ) ( )  )       (    )
 

  

 

Then the equation (    ) can be written as: 

  (∫  (   ) ( )  ) 
 

  

 ∫  (   ) ( )   
 

  

  ( )      (    ) 

By using the equations (4.12) and (4.14), the equation (4.11) is 

expressed as follows: 

 ( )    ( )  ∫  (   ) ( )   
 

  

  ( )    (  ) 

Then  

 ( )  ∫  (   ) ( )  
 

  

   (  )    ( )    ( )      (    ) 

So we have: 

 ( )  ∫  ( )  
 

  

 (  (  )    ( )    ( ))  

From the Lemma 3.4 is obtained: 
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‖ ( )‖   ( )   ‖  (  )    ( )    ( )‖   ( )                 

  (‖  (  )‖   ( )  ‖  ( )‖   ( )  ‖  ( )‖   ( ))      (    ) 
From  the equation (3.4) we have: 

  (  )  ∑   (  )  ( )
 
   . 

By using the    norm the following equation is obtained: 

‖  (  )‖   ( )  ‖∑  (  )  ( )

 

   

‖

  
 ( )

 ∑|  (  )| |  ( )|

 

   

  (    ) 

By using the equation (4.6) is written: 

  (  )  
    
 

 (∫  (    (    )) ( (    )) ( (    ))  
 

  

 ( (    )  ( ))   )    
Then  

|  (  )|  |
    
 

 (∫  (    (    )) ( (    )) ( (    ))  
 

  

 ( (    )  ( ))   )|      

      |
    

 
 | |∫  (    (    )) ( (    )) ( (    ))   

 

  

( (    )  ( ))   |. 

From the Lemma 3.1 is obtained: 

|  (  )|    
  | (    (    ))|  

   ( )
‖ ‖   ( )      (     ) 

Then  

|  (  )|           
     

   
| (   (   ))|

  
   ( )

‖ ‖   ( )              (     ) 

Therefore the equation (4.17) can be written as follows: 

‖  (  )‖   ( )  ∑       
   
| (   (   ))|

  
   ( )

‖ ‖   ( ) |  ( )|

 

   

 

Then  

‖  (  )‖   ( )    
     

   
| (   (   ))|

  
   ( )

‖ ‖   ( )∑ |  ( )|

 

   

  (   ( ))
  ( )

  
 

 

Then the equation (4.27) can be written as: 

‖  ( )‖   ( )    
  ‖ (   ) ( )  ∫   (   ) ( )  

 

  

‖
  
 ( )

     ‖ ‖   ( )                                  (    ) 
Then by using the equations (4.22), (4.24) and (4.28), we 

express the equation (4.16) as follows: 

‖ ( )‖   ( )    
 (   )   

   
| (   (   ))|

  
   ( )

(‖ ( )‖   ( )

 ‖ ( )‖   ( ))     
  | |  

   ( )

     ‖ ‖   ( )                                (    ) 
   

Then  
‖ ( )‖   ( )
    (   )   

   
| (   (   ))|

  
   ( )

‖ ( )‖   ( )       

    (   )   
   

| (   (   ))|
  
   ( )

‖ ( )‖   ( ) 

     | |
  
   ( )

     ‖ ‖   ( ) 
If N be large enough, then we have: 

‖ ( )‖   ( )     
 (   )   

   
| (   (   ))|

  
   ( )

‖ ( )‖   ( )  

     | |  
   ( ) 

 

4.2. Error analysis in    space 

Theorem 4.2. Let   be the exact solution of the Volterra 

equation (   ) and   be defined by (   ) . If     
 ( ) and 

 ( )   ( )   ( ), then for     , 

‖ ( )‖   ( )      
 (   )   

   
| (   (   ))|

  
   ( )

‖ ‖   ( )

   
 
 
  | |

  
   

( )
 

provided that   is sufficiently large, and   is a constant 

independent of  . 

 

Proof: 

Similar to the proof of Theorem 4.1, we get: 

 ( )  ∫  ( )  
 

  

 (  (  )    ( )    ( ))              (    ) 

By using the Lemma (3.4) we have: 

‖ ( )‖   ( )   ‖  (  )    ( )    ( )‖   ( )                          
  (‖  (  )‖   ( )  ‖  ( )‖   ( )  ‖  ( )‖   ( ))      (    ) 

By using the equation (3.4) is expressed: 

  (  )  ∑  (  )  ( )

 

   

 

By using the     norm can be written: 

‖  (  )‖   ( )  ‖∑  (  )  ( )

 

   

‖

  
 ( )

 ∑|  (  )| |  ( )|

 

   

         (    ) 

By using the equation (4.19) we are obtained: 

‖  (  )‖   ( )  ∑       
   
| (   (   ))|

  
   ( )

‖ ‖   ( ) |  ( )|

 

   

  

Then  

‖  (  )‖   ( )

        
   
| (   (   ))|

  
   ( )

‖ ‖   ( )∑ |  ( )|

 

   

  

   
 
 
  | |

  
   ( )

    
 
 ‖ ‖   ( )                             (    ) 

Then  

‖ ( )‖   ( )
    (   )   

   
| (   (   ))|

  
   ( )

‖ ( )‖   ( )     

    (   )   
   

| (   (   ))|
  
   ( )

‖ ( )‖   ( ) 

   
 

 
  | |

  
   ( )

    
 

 ‖ ‖   ( ). 
If N be large enough, then we have: 
‖ ( )‖   ( )  

    (   )      | (   (   ))|  
   ( )

‖ ( )‖   ( )   

  
 

 
  | |  

   ( ). 
 

 

V. NUMERICAL EXAMPLES  

Example 5.1. Consider the Volterra equation (   ) with 

 (   )      
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 ( )      
 

   
(  (   )    (   )) 

The corresponding exact solution is  ( )     . 

This problem was solved in [2]. We use the Chebyshev Gauss 

points as the collocation points, therefore  the points and their 

corresponding weights are as follows: 

      
(    ) 

    
                          

   
 

   
                                       

By using the numerical scheme (    ), we will get numerical 

errors get for several values of  (table5.1-5.3). 

 
TABLE 5.1 

  
 

The error estimate For N=4 

Approximate Solution 
Exact 

Answer 
Error 

-0.9511 

-0.5878 

0 

0.5878 

0.9511 

0.0021 

0.2085 

0.8466 

10.5630 

42.9918 

0.0223 

0.0953 

1 

10.4982 

44.8983 

0.0202 

0.1132 

0.1534 

0.0648 

1.9065 

 

 

TABLE 5.2 

  
 

The error estimate For N=6 

Approximate Solution 
Exact 

Answer 
Error 

-0.9749 

-0.7818 

-0.4339 

0 

0.4339 

0.7818 

0.9749 

0.0202 

0.0486 

0.1676 

1.0035 

5.6263 

22.5621 

48.5311 

0.0203 

0.0438 

0.1763 

1 

5.6723 

22.8100 

49.3827 

0.0001 

0.0048 

0.0087 

0.0035 

0.0460 

0.2479 

0.8516 

 

Also, according to theorem 4.1 can be obtained the error using 

the following equation 

‖ ( )‖   ( )      
 (   )   

   
| (   (   ))|

  
   

( )
‖ ‖   ( )

     | |
  
   ( )

 

That for several values of  , and by inserting        in the 

above formula, the following table is derived 

 
 

TABLE 5.3 
 

 

 

 

 
Example 5.1: The point error. 

 

 

m 

N 

error 

6 

6 

3.2828e-

004 

8 

8 

1.4548e

-005 

10 

10 

3.9136e-

007 

12 

12 

7.0821e-

009 

14 

14 

2.2771e-

011 

m 

N 

error 

16 

16 
9.3767e-

013 

18 

18 
7.8881e

-015 

20 

20 
6.1956e-

017 

22 

22 
5.2652e-

019 

24 

24 
5.2110e-

021 

 

 

Example 5.2. Consider the Volterra equation (   ) with 

 (   )      ( ) 

 ( )     ( )  
 

 
(   ( )     (  ))  

The corresponding exact solution is  ( )      ( ). 
 
 

TABLE 5.4 

 

 

 

 

 

Example 5.2: The point error. 

 
 

m 

N 

error 

6 

6 

5.5942e-

008 

8 

8 

2.4099e

-010 

10 

10 

5.6922e-

013 

12 

12 

8.4479e-

016 

14 

14 

8.5901e-

019 

m 

N 

error 

16 
16 

6.3522e-

022 

18 
18 

3.5679e

-025 

20 
20 

1.5734e-

028 

22 
22 

5.5913e-

032 

24 
24 

1.6351e-

035 

 
 

RESULT 

In this paper we used the Chebyshev-collocation spectral 
method to solve Volterra integral equations. By using this 
method the errors decay exponentially and the approximate 
answers are achieved with higher accuracy degree relative to 
Legendre-collocation spectral method. (The Legendre-
collocation spectral method is the only spectral method that 
ever its convergence analysis is expressed) 
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