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Abstract- An investigation on the nonlinear problem of the 
effect of Hall current on the unsteady free convection flow of 
viscous, incompressible, electrically conducting fluid past an 
impulsively started infinite vertical porous plate is carried out, 
when a uniform magnetic field is applied transverse to the 
plate, while the viscous and Joule’s dissipations are taken into 
account.  The solutions of the coupled nonlinear partial 
differential equations have been obtained by using finite 
difference methods.  Hall current effect on primary and 
secondary velocity, skin friction and rate of heat transfer are 
analyzed in detail for heating and cooling of the plate by 
convection currents.  Physical interpretations and justifications 
are rendered for various results obtained. 

Keywords- Hall current; unsteady MHD flow; natural 

convection; viscous and Joule’s dissipation.  

 

I.  INTRODUCTION  

When a body moves in the upper atmosphere of earth one 
must consider the dynamics of various physical phenomena 
into consideration and nevertheless when such a problem is 
mathematically modeled one usually makes a compromise and 
neglects a few of them to make the problem amenable for 
mathematical analysis depending upon the methods employed. 
Here, we consider the problem of Hall effect on the 
hydromagnetic free convection flow of ionized air past a 
impulsively moving vertical plate in the upper atmosphere, 
taking into consideration the viscous and Joule’s dissipation. In 
what follows we narrate the significance of the various 
physical phenomena considered.  It must be kept in mind that 
the literature on all these various aspects are so vast that one 
cannot do justice in an article of this type to provide the 
complete literature survey and hence only very relevant and  
recent works are cited. 

 

A.   Free Convection and MHD 

Free convection flows arise when buoyancy forces due to 

density differences occur and these act as “driving forces”.  

The density differences are caused by temperature differences 

and hence such problems are mathematically exciting owing 

to the coupling between momentum equation and heat 

equation and nonlinearity.   

It is well known that it is possible to alter the flow and heat 

transfer around an object in upper atmosphere by applying a 

magnetic field provided the air is rarefied and sufficiently 

ionized.  In fact, it has been established [1] that the skin 

friction and heat transfer can be substantially reduced by 

applying a transverse magnetic field.  In the field of 

aerodynamic heating, the problem of providing heat protection 

by MHD effects gained a great momentum after the classical 

work [2].  Fortunately, the magnetic Reynolds numbers in 

such flows are not very high so that the induced magnetic field 

can be neglected.  This amounts to saying that the 

electromagnetic equations are decoupled from momentum and 

heat equations whereas the latter two involve the 

electromagnetic variables.  

The following references are an excellent source of 

information in this regard: [3], [4], [5], [6], [7], [8], [9], [10], 

[11]. One may also refer to the survey article [12] for further 

details.  

 

B. Hall Effect  

The upper atmosphere is ionized and is electrically 

conducting and its electrical conductivity depends on various 

parameters like location, time, height, season, etc, and it is 

anisotropic.  Under such situations, when the number density 

of electrons is relatively small, it becomes pertinent to note 

that the charged particles are tied to the lines of force when a 

strong magnetic field is applied, and this prevents their motion 

transverse to the magnetic field.  Then the tendency of the 

current to flow in a direction normal to both the electric and 

magnetic fields is called Hall effect and the corresponding 

current is known as Hall current. .    

There are a good number of works on Hall effect and one 

may refer to [13], [14], [15], [16], [17].  
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C.  Suction 

Generally, the low energy fluid in the boundary layer is 

sucked through the wall to prevent boundary layer separation. 

Suction is one of the techniques employed in the boundary 

layer control in aerodynamics and space science and it is 

effectively used to reduce the skin friction as well as heat 

transfer around the moving body. Suction is also used 

effectively to increase the lift on airfoils too. In this 

connection, one may refer to [4], [5], [6], [18], [19].  

 

D.  Viscous Dissipation 

The heat generated per unit time and unit volume by 

internal friction is called the viscous dissipation.  In the case 

of air, for a temperature difference of 10
o
 F, a velocity of the 

order 150
1ms will make the viscous dissipation term 

comparable with other terms [20].  Indeed, it is known [21] 

that significant viscous dissipation may occur in natural 

convection in various devices which are subject to large 

decelerations or which operate at high rotative speeds.  In 

addition, important viscous dissipation effects may also be 

present in stronger gravitational fields and in processes 

wherein the scale of the processes is very large, for example, 

on larger planets, in large masses of gas in space, and in 

geological processes in fluids internal to various bodies.  One 

may refer to the works of [7], [21], in this regard. 

 

E.  Joule’s Dissipation 

Apart from the viscous dissipation, in the MHD flows, 

Joule’s dissipation also acts a volumetric heat source [22], 

[23] and this represents the electromagnetic energy dissipated 

on account of heating of the medium by the electric current.  It 

depends on the strength of the applied magnetic field. Indeed, 

in MHD flows there is not only energy transfer between the 

electromagnetic field and the fluid flow, but also a portion of 

the kinetic energy is converted to thermal energy by means of 

Joule heating.  When a stronger magnetic field is applied the 

flow is retarded severely and also there is a considerable 

heating of the fluid due to Joule effect. Joule heating causes, 

in general, an increase of temperature and its gradient, mainly 

in the temperature boundary layer [24].   Hence, one must 

consider this effect while modeling problems related to 

atmospheric flights.   

To understand the importance of and the current interests 

on the investigations involving Hall current, viscous and 

Joule’s dissipation, one may refer to [25], [26], [27], [28], 

[29], [30], [31], [32], [33], [34]. 

Apart from the application mentioned supra, the 

investigations of heat transfer in magnetohydrodynamic 

(MHD) flows past a porous plate under the influence of a 

magnetic field find useful applications in many engineering 

problems such as MHD generator, plasma studies, nuclear 

reactors, geothermal energy extractions and the boundary 

layer control in the field of aerodynamics [35]. 

      However, to the best of the knowledge of the authors, so 

far no attempt has been made to study the effect of Hall 

current on the free convection flow past an impulsively started 

vertical porous plate in the presence of a uniform transverse 

magnetic field, taking into account viscous and Joule’s 

dissipations.  The main focus of the paper is to gain physical 

insights and hence the nonlinear problem considered here is 

solved using a simple and straight forward explicit finite 

difference method.  An attempt has been made to provide 

physical reasoning or justification wherever possible.  

Researchers interested in rigorous mathematical methods to 

solve this problem may refer to a related problem addressed in 

[32] and adopt a similar procedure. However, it should be 

noted that the perturbation technique employed in the cited 

work is cumbersome and time-consuming.   

 

II. FORMULATION OF THE PROBLEM 

An unsteady free convection flow of an electrically 

conducting, viscous, incompressible fluid past an impulsively 

started infinite vertical porous plate, in the presence of a 

transverse magnetic field with the effect of Hall current is 

considered.  The initial temperature of the fluid is the same as 

that of the fluid, but at time 0t  the porous plate starts 

moving impulsively in its own plane with a constant velocity 

0U  and its temperature instantaneously rises or falls to '
wT  

which thereafter is maintained as such.  The fluid is assumed 

to have constant properties except that the influence of the 

density variations with the temperature, following the well-

known Boussinesq approximation [36] is considered only in 

the body force terms. 

 

The x -axis is taken along the infinite vertical porous wall 

in the upward direction and y -axis normal to the wall.  A 

constant magnetic field of magnitude '
0B  is applied in             

y - direction.  Since the effect of Hall current gives rise to a 

force in z direction, which induces a cross flow in that 

direction, the flow becomes three dimensional.  Let vu , and 

w denote the velocity components in the yx  , and z  

directions respectively.  Let '
0v  be the constant suction 

velocity. 

 

The governing equations of the problem are as follows:  
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      The above equations are equation of continuity, 

momentum equation, energy equation, generalized Ohm’s 

Law and the two Maxwell’s equations respectively.  Here, q 


 

is the velocity field, T   the temperature field, T  the 

temperature of the fluid at infinity, B


 the magnetic induction 

vector, E


 the electric field vector, j 


 the current density 

vector, p  the pressure of the fluid,  ep  the electron pressure, 

  the density of the fluid,   the coefficient of viscosity,   

the kinematic coefficient of viscosity, k  the thermal 

conductivity, e  the electron charge, en  number density of 

electron,  pC  the specific heat capacity at constant pressure, 

  the viscous dissipation function and t   the time.  The 

viscous dissipation function, for an incompressible fluid, is 

given by  
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The term 


2'j


 in the energy equation is the Joule’s 

dissipation.  

 

      The magnetic Reynolds number is considered to be small 

and hence the induced magnetic field is neglected in 

comparison to the transversely applied magnetic field 

jBB ˆ
0


, which is assumed to be uniform [37].  Further, 

since no external electric field is applied, and the effect of 

polarization of ionized fluid is negligible, it can be assumed 

that the electric field is zero.  As the plate is infinite, all 

variables in the problem are functions of y and t   only.  

Hence, by the usual considerations of the impulsively started 

vertical flat plate problem, the basic equations become  
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where 
ene

B
m 0


 is the Hall current parameter.  Obviously, 

ovv  . 

 

The physical quantities are cast in the non-dimensional 

form by using the following dimensionless scheme: 
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Hence, the governing equations of the problem in the non-

dimensional form are given by 
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It is evident that the initial and boundary conditions are 

given by  
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III. SOLUTION OF THE PROBLEM 

 

It is not possible to find the exact solutions of the coupled 
non-linear partial differential equations (12) to (14) subject to 
the initial and boundary conditions (15) and hence the 
numerical solutions of the above equations are obtained by 
explicit finite difference scheme. The set of finite difference 
equations corresponding to equations (12) to (14) are: 
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where the index j  and k correspond to the variables y  and t  

respectively. 

 

During computations, y  is taken as 0.1 and t  is taken 

as 0.002.  The initial conditions in equation (15) take the form  

0)1,( ju , 0)1,( jw and 0)1,( j .  The boundary 

conditions at 0y  in equation (15) become 1),1( ku , 

0),1( kw and 1),1( k . 

Depending upon the closed form solution obtained in [4]  

using Laplace Transform method for the hydromagnetic free 

convection flow of an electrically conducting fluid, with 

Prandtl number unity,  past an impulsively started infinite 

vertical porous plate with constant suction, y  is 

approximated by .1.4y This approximation was also earlier 

used in [5] and [6].  Thus, the boundary conditions in equation 

(15) for y reduce to 0),42( ku , 0),42( kw and 

0),42( k . 

 

The x component of the velocity at the end of a time 

step, namely )1,( kju  for 1j  to 42j , is computed 

using equation (16) in terms of velocity components and 

temperature at gird points on the earlier time steps.  Similarly, 

the values of )1,( kjw and )1,( kj  are computed using 

the equations (17) and (18) respectively.  This procedure is 

repeated till 4.0t , that is 201k .   

To judge the accuracy of the results, under appropriate 

limits, the numerical solutions obtained are compared with the 

analytical solutions of [4] and [32] at 2.0t  and 4.0t  for 

the entire range of y  values.  The agreement was excellent 

with a maximum error of less than 5%.  Further, to test the 

convergence part, the program was also run with smaller 

values of t , say   001.0 t .  There were no significant 

changes in the results, thus establishing the fact that the finite 

difference scheme is independent of the mesh size 

for 002.0 t . 

 

IV. RESULTS AND DISCUSSION 
 

The results of our present investigation reduce to those of 

[5], in the absence of Hall current, when viscous and Joule’s 

dissipation are neglected.  The results of [4] can also be 

recovered from our results by appropriate choice of values for 

the physical parameters.  When our numerical results were 

compared with the earlier analytical work like [4] and [32], 

there was an excellent agreement with a maximum error of 

less than 5%, as stated above. Qualitatively, the results 

obtained are in good agreement with the earlier works, like 

those of [7] and [17].  The quantitative differences arise 

because of different initial and boundary conditions used 

owing to different physical situations considered.  Graphical 

illustrations of such comparisons are not presented due to 

paucity of space.  For further details on the accuracy of the 

present numerical method, one may refer to [17]. 

  

It must be noted that negative values of the 

parameters G and E  correspond to the case of the plate being 

heated by the convection currents and similarly their positive 

values correspond to the case of the plate being cooled by the 

convection currents.  We refer to the values of 9.0G  as 

moderate cooling and heating and 5G  as greater cooling 

and greater heating respectively.  In the following discussion, 

the value of the non-dimensional time is fixed at 4.0t .  The 

value of Prandtl number is taken as 0.71 which corresponds to 

air.  Air is assumed to be incompressible since all the 

velocities considered are less than the velocity of sound in the 

medium (air) so that the Mach number is less than unity [38].  

The values for the various parameters are chosen 

approximately to correspond to a sufficiently ionized air, the 

flow of which can be modified by an applied magnetic field. 

Figures 1 and 2 show that the primary velocity u  is 

diminished and the secondary velocity w  is increased due to 

the applied magnetic field.  This is in good agreement with the 

results of [13].  Indeed, when a transverse magnetic field is 

applied it is well known that the Lorentz force acts in a 

direction opposite to the flow and offers resistance to the flow 

and such a phenomenon is described by the term “magnetic-

viscosity”.   
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Fig.1. Effect of Magnetic Field on the Primary Velocity 

 

 

 
 

Fig.2. Effect of Magnetic Field on the Secondary Velocity 

 

 

From Figs. 3 and 4, it is inferred that the Hall current 

promotes the flow along the plate, both when the fluid is 

heated or cooled. This is because, in general, the Hall current 

reduces the resistance offered by the Laurentz force.  

 

 
 

Fig.3. Effect of Hall Current on the Primary Velocity 

(For cooling and heating of the plate) 

 

 

 
 

Fig.4. Effect of Hall Current on the Primary Velocity  
(For greater cooling and heating of the plate) 

 

It is also observed that the primary velocity u  is greater in 

the case of cooling of the plate than in the case of heating of 

the plate.  Flow reversal is also noticed in the case of greater 

heating of the plate. The rise and fall in velocity due to 

cooling and heating of the plate can be explained as follows.  
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In the process of external cooling of the plate, the free 

convection currents travel away from the plate.  As the fluid is 

also moving with the plate in the upward direction, the 

convection currents tend to help the velocity to increase.  But, 

in the case of heating of the plate, as the free convection 

currents are traveling towards the plate, the motion is opposed 

by these currents and hence there is a decrease in velocity.  In 

the case of greater heating, this opposition is large enough to 

counteract the upward push offered by the movement of the 

plate on the fluid particles just outside the thermal boundary 

layer and the net force acts downwards and hence the flow 

becomes downwards.  

The effect of Hall current on the secondary velocity w  is 

depicted through Figs. 5 and 6.  The secondary velocity is 

induced by the component of the Lorentz force in the 

z direction which arises solely due to the Hall current.  From 

equation (13), it is clear that u
m

mM

)1( 2
 is the term which 

decides the flow in the z direction.  If the Hall parameter 

0m , then the term mentioned above is zero and hence there 

is no force to induce the flow in the z direction.  That 

is, 0w .  Further, 
)1( 2m

m


increases as m  increases in the 

range 10  m and it decreases as m  increases in the range 

1m . This means that the magnitude of the component of the 

Lorentz force in the z direction increases as m  increases in 

the range 10  m and hence the secondary velocity w  is 

increased, while it decreases when  m  increases in the range 

1m and hence the secondary velocity w  is decreased. These 

results are observed graphically in Figs. 5 and 6.   

The secondary velocity w  is observed to be greater in the 

case of cooling of the plate than in the case of heating of the 

plate.  This result also can be inferred from the term 

u
m

mM

)1( 2
 of equation (13).  The primary velocity u  is 

greater in the case of cooling than in the case of heating of the 

plate and so is the term mentioned above, which is the 

deciding factor so far as the secondary velocity is concerned. 

This ultimately results in the secondary velocity being greater 

in the case of cooling of the plate than in the case of heating of 

the plate. By similar arguments, the flow reversal observed in 

the secondary velocity in the case of greater heating can also 

be attributed to the flow reversal in the primary velocity. 

The temperature   is not significantly affected by the 

magnetic field and Hall current, except in the very close 

vicinity of the plate.  This is because the effect of the 

Hartmann number and Hall parameter can be felt only in the 

Hartmann layer and the thermal boundary layer respectively. 

  

 
 

Fig.5. Effect of Hall Current on the Secondary Velocity  
(For cooling and heating of the plate) 

       

 
 

Fig.6. Effect of Hall Current on the Secondary Velocity  

(For greater cooling and heating of the plate) 

 

Hence, graphical illustrations of the effect of these 

parameters on the temperature are not presented.  However, 

appreciable changes in the slope of the temperature profiles 

very close to the plate, 0y , were observed and hence the 

effect of these parameters on rate of heat transfer are presented 

below. 
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The skin friction 

0














y
y

u
 and the rate of heat 

transfer 

0














y
y

q


are calculated by numerical 

differentiation using Newton’s forward Interpolation formula.  

During computation of the above quantities, the non-

dimensional time is fixed at .4.0t  

 
TABLE 1. Values of skin friction and rate of heat transfer for air 

)71.0( P at time 4.0t  

G E M m 

Skin 

Friction 

  

Rate of Heat 

Transfer q  

-0.9 0.00 0.4 0 1.902441 1.190122 

-0.9 0.00 0.4 1 1.902441 1.190122 

-0.9 -0.01 0.4 0 1.902073 1.195809 

-0.9 -0.01 0.4 1 1.902073 1.195809 

-0.9 -0.01 10 0 4.015853 1.206905 

-0.9 -0.01 10 1 3.332132 1.203572 

-0.9 -0.01 10 10 1.953934 1.196097 

0.9 0.00 0.4 0 1.739660 1.190122 

0.9 0.00 0.4 1 1.739660 1.190122 

0.9 0.01 0.4 0 1.736100 1.185873 

0.9 0.01 0.4 1 1.736100 1.185873 

0.9 0.01 10 0 3.571448 1.173194 

0.9 0.01 10 1 2.826338 1.176920 

0.9 0.01 10 10 1.234781 1.185530 

-5.0 -0.01 10 0 5.026522 1.207684 

-5.0 -0.01 10 1 4.482647 1.205384 

-5.0 -0.01 10 10 3.590076 1.200920 

5.0 0.01 10 0 2.556977 1.171634 

5.0 0.01 10 1 1.671793 1.176159 

5.0 0.01 10 10 -0.405391 1.186781 

 

It is observed that the Hartmann number M increases the 

skin friction , irrespective of whether the plate is heated or 

cooled, both in the presence and absence of Hall current.  This 

is because the effect of transverse magnetic field is to retard 

the flow by offering additional resistance called magnetic 

viscosity.   

It is noticed that, both in the presence and absence of Hall 

current, due to magnetic field, the rate of heat transfer q  

increases when the plate is heated and it decreases when the 

plate is cooled.   

 However, the effect of Hall current is to decrease the skin 

friction in both the cases of heating and cooling of the plate.  

This is because the effect of Hall current is to decrease the 

resistance offered by the Lorentz force.  Finally, the effect of 

Hall current is to decrease the rate of heat transfer when the 

plate is heated and increase the same when the plate is cooled. 

 

 

 

V. CONCLUSION 

At the outset, our numerical results are in good agreement 

with those of [5] in the absence of Hall current, when the 

viscous and Joule’s dissipations are neglected.  In the non-

magnetic case, our results reduce to that of [18]. Qualitatively 

and quantitatively our results are in good agreement with the 

earlier analytical results reported in [4] and [32].  The effects 

of magnetic field and Hall current on the flow and heat 

transfer are analyzed and physical interpretations or 

justifications of the results are provided as and when possible.  

The results obtained can be summarized as follows. 

 

 Applied magnetic field retards the primary flow along the 

plate and supports the secondary flow induced by the Hall 

current. 

 Hall current promotes the flow along the plate.  The 

secondary flow is supported when the Hall parameter is 

increased up to unity.  If the Hall parameter is increased 

beyond unity, the secondary flow is retarded.  These 

results are true for both cooling and heating of the plate. 

 Both primary and secondary velocities are found to be 

greater in the case of cooling of the plate than in the case 

of heating of the plate. 

 Flow reversal is observed in both primary and secondary 

velocity components in the case of greater heating of the 

plate. 

 Magnetic field and Hall current modify only the slope of 

the temperature profile in the narrow region close to the 

plate called the thermal boundary layer.  Otherwise, their 

effect on temperature is not significant. 

 Skin friction is increased by the magnetic field. 

 The effect of magnetic field is to increase the heat transfer 

rate when the plate is heated and decrease it when the 

plate is cooled. 

 Hall current decreases the skin friction. 

 Due to Hall current the heat transfer rate decreases when 

the plate is heated and it increases when the plate is 

cooled. 

 

To improve upon the present work, it is suggested that one 

may consider the effect of rotation.  Further,   in order to 

investigate supersonic flows one may consider the effects of 

compressibility.  It is also suggested that the atmosphere may 

be considered as a stratified fluid.  Obviously, these 

suggestions will lead to more complex problems but are worth 

investigating.  
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