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Abstract- One of the main goals of Science is to model nature’s 
behavior by means of mathematical equations. Such equations 
tend to ratify some of the basic notions one has about a given 
phenomena. Conservation of mass, continuity of fluids and 
equilibrium of phases are some of these “intrinsic” properties 
which are related to the physical interpretation of a given 
phenomenon. This way, while considering tailings deposition, 
the latter must satisfy field equations regarding conservation of 
the solid phase besides continuity and equilibrium of the liquid 
phase. In the present paper, a rigorous mathematical approach 
to the modeling of the main characteristics of tailings is 
presented. In short, an analytical solution deduced by means of 
Laplace transform is compared to numerical solutions based on 
finite differences method, Lax-Wendroff method and the 
Cubically Interpolated Pseudo-particle (CIP) method. It is 
shown that CIP method overcomes the problem of spurious 
numerical dissipation induced by the other numerical methods 
analyzed. Also, a study of case is done and the numerical 
solution closely matches the observed experimental data. 

Keywords- Tailings, Hydraullic Deposition, Finite Difference 

Method, Lax-Wendroff Method, Cubically Interpolated 

Pseudo-particle. 

 

I.  INTRODUCTION 

In [1] it has been presented a model to simulate the bed 
load transport of heterogeneous sediments. The model couples 
Navier-Stokes equations, representing continuity and 
equilibrium of the fluid phase, with the equation for the 
conservation of mass of the solid sediments. Besides, a 
constitutive relation that describes the rate of transported 
sediments should also be adopted. 

Heterogeneous sediments or tailings, comprising iron and 
quartz particles, are commonly produced during the extraction 
and concentration of iron. The bed load transport phenomenon, 
in which the particles roll when carried by a thin film of water, 
is the most representative of the actual condition that is 
observed during the construction of tailings dams using 
hydraulic deposition techniques. Despite some engineering 
drawbacks, mainly if the upstream construction method is used, 
this is the solution for waste disposal generally adopted by 
most mining industries, due to its relatively low costs. 

The coupled model for the conditions of equilibrium and 
continuity of the fluid phase, plus the continuity of the solid 
sediments, results in a system of hyperbolic equations. In this 
kind of problem the material is transported without dissipation. 
Nevertheless, if this system of equation is solved using classic 
techniques, such as the explicit Finite Differences Method 
(FDM), the solution introduces spurious dissipations that are 
purely numerical without any relation with the real physical 
problem. In order to overcome this problem, another technique 
known as the Cubic Interpolated Pseudo-particle method (CIP) 
is adopted in this paper. 

 

II. COUPLED MODEL FOR BED LOAD TRANSPORT 

In this section, a mathematical model for the bed load 

transport of heterogeneous sediments is presented. The model 

couples the behavior of the fluid phase and the sediments, 

composed of particles of quartz and iron. The objective when 

developing this model was to devise a mathematical and 

numerical tool that could help to forecast the profile of 

hydraulic deposition, including segregation, in tailings dams. 

Parametric analyses using this model, are very useful to gain 

further insight about the mechanisms involved during the 

deposition process, such as the distribution of density, porosity 

and grain sizes along the profile, as a function of the 

production variables (discharge and pulp concentration). 

Considering the continuity of the fluid phase, equilibrium 

in the fluid, continuity of transported sediments and a relation 

for the rate of sediment transport, respectively, the following 

equations were deduced [1]: 
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in which u is the velocity of transport of sediments, a is the 
film of water above the bed of the deposition profile, zb is the 
height of deposited sediments, s is the rate of transported 
sediments composed of particles of two types k (quartz, Qz and 
iron, Fe), Ch is the coefficient of Chèzy, mk and nk are empirical 
constants dependent on the properties of the sediments, x is the 
horizontal distance, as illustrated in Error! Reference source 
not found., and t is time. 

Figure 1.  Details of an infinitesimal element in the upstream slope 

In [2] it has been presented a numerical solution for the 
system (1)-(4), based on the Finite Differences Method using 
advanced differences in time and central differences in the 
space domain. The resulting explicit algorithm is summarized 
as follows: 
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It has been compared in [2] the solution obtained with the 

Finite Differences algorithms in (5)-(8) with the experimental 

data obtained in [3] from laboratory hydraulic deposition tests. 

The numerical and empirical results were also compared with 

analytical solutions obtained by [4] for simplified boundary 

conditions, expressed as follows: 
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a0, s0 and i0 are the initial values for the film of water, solid 

transport rate and beach bed  inclination, respectively. 

When comparing the analytical solution and the FDM 

solution in (5)-(8), the numerical results were satisfactory only 

for a time-space discretization with a Courant number 

(C=u0.∆t/∆x) equal to one. However, for C values less than 

unit the numerical solutions showed spurious dissipation and 

the results did not converge to those obtained analytically and 

empirically. This numerical error is investigated in [5] and in 

the present paper. The solution to such numerical problem 

may be achieved using the so-called Cubic Interpolated 

Pseudo-particle (CIP) method (discussed in [6]). 
 

III. CIP METHOD 

The cubic interpolated pseudo-particle method, CIP, as 
proposed in [7], is used here to find an approximate 
solution u(x, t) to the advection problem. For a given 
constant advection velocity v > 0, the solution should 
propagate the information, displacing the curve by an 
amount equal to x v t    to the right during the time 

interval ∆t. For this to happen, the following hypothesis is 
assumed as illustrated in Figure 2 (a): 

 

 ( , ) ,u x t u x x t t                                             (12) 
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Figure 2.  Hypothesis of CIP Method (modified from Moriguchi, 2005). 

In the CIP method [8], the discrete solution 
n

ku  at time 

n for a mesh of points xk in the space domain x is smoothed 

by approximating a Hermite cubic polynomial U(x) in each 

space interval of length ∆x between successive points [xk-1, 

xk]. The general form of the polynomial is given by: 
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The space derivatives of the cubic Hermite polynomial 
are given by: 
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The CIP method forces the polynomial approximation 
and its derivatives, U(x) and U’(x), to match the discrete 
values, u(x, t) and u’(x, t), at the extremes of each space 
interval [xk-1, xk] (see Figure 2b): 
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From the hypothesis presented in (15a) and using (13) 

and (14), it is possible to determine the coefficients ck-1 and 

dk-1: 
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hypothesis presented in (15b) to the extreme values in (7) 
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Now that all constants are determined, the discrete 
values of u(x, t) and u’(x, t) may be propagated to the next 
time step n+1 as follows: 
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The operations previously explained should be 
performed for all points of the mesh, for each interval in 
the space domain. This allows to estimate values of u and 
u’ explicitly at the next time step n+1, given these values at 
time step n. Therefore the initial solution at t=0 is 
propagated in time during as many time steps as necessary. 
Notice, however, that the CIP scheme requires not only the 
values of the function at all space points as an initial 

condition 
0

ku , but also the values of the derivatives, 
0  '

ku . 

If these derivatives are not explicitily given as a continuous 
function, u’(x, 0) = f’(x), it is still possible to estimate them 
using the central finite differences of the initial discrete 
function values [9]: 
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The CIP method can eliminate the dissipation and 

oscillation problems observed when solving the advection 

equation with the Finite Differences and Lax-Wendroff 

methods with Courant numbers less than unit. This is 

fundamental for an independent and efficient discretization 

of the problem in both time and space domain. 
The general mathematical formulation of an advective 

problem, in one-dimensional space, is described by the 
following hyperbolic equation: 

0t xu v u                             (22) 

in which v > 0 is the advection velocity and v.ux is the so 

called advective term. The independent variable u is 

function both of space x and time t; ux and ut denote its 

derivatives. 

One may notice that (22) represents the transport of u 

along axis x towards the right-hand side when v > 0. Since 
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Figure 3.  Solution for the Advection Problem with (a) particular initial 

condition, using (b) FDM, (c) Lax-Wendroff and (d) CIP methods and a 

Courant number C=0.5. 

this equation does not contain a dissipative term, xxu , then the 

value of u should just be transported along x, without 
undergoing any alteration, between time t0 and t0 + ∆t. The 
absence of dissipative phenomena implies that any 
discontinuity in the initial conditions should propagate to the 
solution at any time t > 0. This implies that hyperbolic equation 
admits discontinuous solutions, and the numerical method 
adopted to solve these equations should be able to deal with 
such discontinuities efficiently. 

The initial value problem, or Cauchy problem, for the 
advection equation consists in finding a function u(x, t) in the 

semi-space   , / 0,D x t t x     , that satisfies both 

(22) and a particular initial condition. In general the solution is 
continuous and sufficiently differentiable, but this is not always 
the case. 

As an example, consider the phenomenon of a wave 
propagating to the right hand side with the particular initial 
condition described in Figure 3(a).  

In Figure 3, the solution for the advection problem, was 
obtained using the Finite Differences, Lax-Wendroff and CIP 
methods for a Courant number C=0.5. These solutions are 
shown for time equal to 3 s. Notice that the initial solution 
propagated in time without any loss of information, dissipation 
or oscillations for the CIP method. 

Figure 4 shows the absolute error compared with the 

analytical solution. 

Figure 4.  Absolute Error 

IV. COUPLED BED LOAD TRANSPORT PROBLEM SOLVED BY 

CIP 

The CIP method is efficient to solve advection problems, 
which results in hyperbolic equations for which dissipation 
phenomena are not present or may be disregarded. In order to 
use the CIP method, according to an algorithm known as 
particle-in-cell [10], the transport model in (1)-(4), must be 
split in two parts: an advective (Lagrangian) phase, and a non-
advective (Eulerian) phase.  

The non-advective equations governing the model are the 
following: 
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The advective equations of the problem are as follows: 

0t xa u a  
                        (27) 

0t xu u u  
                               (28) 

Therefore the equation governing continuity of the fluid 
phase, (1), was divided into a non-advective part in (23) and an 
advective part in (27). The same process was applied to the 
equation governing equilibrium of the fluid phase, (2), which 
was split into (24) and (28). 

The CIP method is applied only to the advective equations, 
thus avoiding the introduction of spurious numerical 
dissipations in the solution. The non-advective equations may 
be solved using the Finite Differences Method (FDM) or any 
other method. In this case the correspondent non-advective 
formulations (23)-(26), may be re-written as: 
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After solving the non-advective equations, these solutions 
are used as initial conditions for the advective equations. The 
advective phase, (27) and (28), is solved using the CIP method 
as described by the authors in this paper and in [5]. 

V. EXPERIMENTAL SIMULATION AND MODEL VALIDATION 

Considering the importance of predicting the behaviour of 

hydraulic fill structures in the field and afterwards analyzing 

the performance of different kinds of laboratory simulation 

tests, a hydraulic deposition simulation apparatus was 

developed at the University of Brasilia [3]. The apparatus 

consists of a depositional channel, 6.0 m long, 0.4 m wide and 

1.0 m high. The channel was built using steel profiles and 

panels of tempered glass. This kind of wall permits the 

observation of the evolution of the deposition process during 

the entire test. Figure 5 shows a general view of hydraulic 

deposition simulation tests (HDST), developed at the 

University of Brasilia. 

Figure 5.  General view of the HDST equipment developed at the 

University of Brasilia 

A series of comparisons were made between the HDST 
results obtained by [3] and those forecasted by the coupled 
model solved by analytical, FDM and CIP techniques, for 
different Courant numbers. According to [3], the main 
characteristics of the material used in the HDST are those 
presented in Tables 1 and 2. In Tables 1 and 2, Fe is the 
percentage of iron particles, Cw is the concentration of solid 
particles (quartz and iron) in the slurry, Q is the slurry flow rate 
and im is the average (global) beach slope. 

 

TABLE I.  AVERAGE PHYSICAL CHARACTERISTICS OF THE TAILINGS 

USED IN THE HYDRAULIC DEPOSITION SIMULATION TEST HDST [3]. 

 

 

 

 

 

 

TABLE II.  CONTROLLED VARIABLES AND FINAL SLOPE INCLINATION 

OF THE HYDRAULICALLY DEPOSITED BEACH [3]. 

 

 

 

 

 

Figures 6 and 7 present comparisons between the results 
obtained from tests HDST 1 and 6 by [3] and those obtained 
analytically using the mathematical model proposed  by [4], 
and numerically using the FDM as obtained by [2] and using 

 HDST 1 HDST 6 

Cw (%) 8.9 20.4 

Fe (%) 23.0 23.0 

Q (l/min) 4.8 5.9 

im (%) 7.7 9.2 

 Quartz Iron 

D50 (mm) 0.265 0.240 

D90 (mm) 0.645 0.640 

Gs 2.65 5.50 
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(b) 

the CIP technique describe in [5] for a Courant number equal 
to 0.5. Axis x (abscissas) represents the distance from the 
discharge point and axis y (ordinates) gives the normalized 
height of the deposited beach. 

Figure 6.  Comparisons between experimental data for test HDST 1 

(Ribeiro [3]) and numerical results using: (a) Finite Differences; and (b) 
CIP method for Courant number C=0.5. 

From Figures 6 and 7, one can notice that the mathematical 
model is not able to describe the successive erosion and 
deposition processes, which are clearly observed in the HDST 
beaches. However, the model describes quite well the basic 
geometric characteristics of the deposited beaches, such as 
global slope inclination. The numerical solution using the 
Finite Differences Method differs drastically from the 
experimental and analytical solution for the adopted time-space 
discretization with C=0.5. This is due to spurious dissipation 
introduced by the numerical solution scheme as explained in 
[5]. This problem is solved when the mixed CIP-FDM scheme 
is adopted and the numerical solution matches satisfactorily the 
experimental and analytical results for any Courant number, as 
illustrated in figures 6(b) and 7(b) for C=0.5 

VI. CONCLUSIONS 

A coupled system of equations representing the bed load 
transport of heterogeneous sediments in hydraulically 
deposited tailings dams was described. This model is governed 
by the field equations for equilibrium and continuity of the 
fluids and the condition of continuity of the solid particles. A 

constitutive model must also be assumed for the rate of 
transport of the sediments. 

The overall system of equations governing the problem 
may be split in a sub-system of advective equations and a sub-
system of non advective equations. Advective equations do not 
exhibit dissipation during the transport phenomena; however 
spurious numerical dissipations are introduced in the solution 
when classical schemes, such as the Finite Differences Method 
(FDM), are used to solve this kind of hyperbolic equations. 

The solution for the unrealistic numerical dissipation 
problem may be achieved by adopting the so-called CIP (Cubic 
Interpolated Pseudo-particle) method to solve the advective 
part of the equations governing the overall problem. The 
remaining equations may be solved using any other method, 
such as the FDM, without undesirable numerical problems. 

 

Figure 7.   Comparisons between experimental data for test HDST 6 

(Ribeiro [3]) and numerical results using: (a) Finite Differences; and (b) 

CIP method for Courant number C=0.5. 

ACKNOWLEDGMENT 

The authors acknowledge the support of the following 
institutions: Brazilian National Research Council (CNPq) and 
University of Brasilia. The authors are also indebted to Dr. 
Shuji Moriguchi and Professor Takayuki Aoki from Tokyo 
Institute of Technology, Japan, for their kindness in teaching us 
the details of the CIP method. 



International Journal of Science and Engineering Investigations, Volume 1, Issue 7, August 2012 70 

www.IJSEI.com           Paper ID: 10712-11 ISSN: 2251-8843 

REFERENCES 

[1] Cavalcante, A.L.B. Modeling and Simulation of Bed Load Transport of 
Heterogeneous Sediments Coupling Stress-Strain-Porepressure Applied 
to Tailings Dams. (In Portuguese) PhD Thesis, Department of Civil and 
Environmental Engineering, University of Brasilia, Brazil, 313 p, 
(2004). 

[2] Cavalcante, A.L.B., Assis, A.P. & Farias, M.M. Bed Load Transport in 
Tailings Dams – Analytical and Numerical View. Proc. of the 4th 
International Workshop on Applications of Computational Mechanics in 
Geotechnical Engineering, Brasil, pp. 103-113, (2003). 

[3] Ribeiro, L.F.M. Physical Simulation of the Process of Formation of 
Hydraulic Fills Applied to Tailings Dams. (In Portuguese) PhD Thesis, 
Department of Civil and Environmental Engineering, University of 
Brasilia, Brazil, 232 p., (2000). 

[4] Cavalcante, A.L.B; Assis, A.P. and Farias, M.M. Numerical Sediment 
Transport Model of Heterogeneous Tailings. Proc. 5th European 
Conference on Numerical Methods in Geotechnical Engineering, 5th 
NUMGE, Paris, France, pp. 491-496, (2002). 

[5] Cavalcante, A.L.B & Farias, M.M. Numerical Schemes for the Solution 
of Advection Problems. Proc. of the 5th Int. Workshop on Applications 
of Computational Mechanics in geotechnical Engineering, Guimarães, 
Portugal, pp. 417-427, (2007). 

[6] Cavalcante, A.L.B, Farias, M.M & Assis, A.P. Heterogeneous Sediment 
Transport Model Solved by CIP Method. Proc. of the 5th Int. Workshop 
on Applications of Computational Mechanics in geotechnical 
Engineering, Guimarães, Portugal, pp. 429-437, (2007). 

[7] Yabe, T. & Takei, E. A New Higher-Order Godunov Method for 
General Hyperbolic Equations. Journal of the Physical Society of Japan. 
Vol. 57, No. 8, pp. 2598-2601, (1988). 

[8] Yabe, T. & Aoki, T. A Universal Solver for Hyperbolic Equations by 
Cubic Polynomial Interpolation. Comput. Phys. Commun. Vol. 66, pp. 
219-232, (1991). 

[9] Moriguchi, S. CIP-Based Numerical Analysis for Large Deformation of 
Geomaterials. PhD Thesis, Gifu University, Japan, 123 p, (2005). 

[10] Nishiguchi, A. & Yabe, T. Second order fluid particle scheme. J. 
Comput. Phys. Vol. 52, pp. 390-, (1983). 

 

 


