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Abstract- To optimally solve hard optimization problems in 
real life, many methods were designed and tested. The 
metaheuristics proved to be the generally adequate techniques, 
while the exact traditional optimization mathematical methods 
are prohibitively expensive in computational time. The 
population-based metaheuristics, which manipulate a set of 
candidate solutions at a time, have advantages over the single-
state methods and therefore are preferred techniques when hard 
problems are to be solved. Such metaheuristics include Genetic 
Algorithms, Ant Colony Optimization, Particle Swarm 
Optimization, Scatter Search and many more methods. In this 
survey a comparative analysis of the main population-based 
metaheuristics was accomplished; the focus is on the 
fundamental properties regarding operational principle, on the 
adequate problems, the advantages and disadvantages in use.  
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I.  INTRODUCTION TO METAHEURISTICS 

A wide class of real world problems is optimization 
problems. In economics (corporate finance, investments, 
production, distribution, purchasing, human resources), in 
industry (mechanics, engineering, airlines and trucking, oil and 
gas, electric power), in agriculture, in financial services and 
many other fields, optimality is a central issue. We try to 
maximize the profit, the flow, the resistance, the efficiency, the 
utility, or to minimize the cost, the time spent, the loss, the 
risks etc. while some constraints are satisfied. To note that 
many times, multiple antagonist objectives have to be 
simultaneously fulfilled.    

The first methods proposed to solve optimization problems 
were the exact optimization techniques: the traditional 
mathematical optimization methods (direct methods and 
gradient methods), the enumerative methods (guided or 
unguided), Lagrangian relaxation and decomposition strategies. 
These optimization methods are designed to find all the global 
optimal solutions to the problems. A very good characteristic! 
Why need other optimization techniques? 

When little information about the problem is known, or the 
complexity level is high, or the instance dimensions are big, all 
the beautiful mathematical tools become mostly unhelpful. 
There are many real world problems that are multimodal, 
nonlinear, deceptive and multi-objective. The search space for 
such problems, if additionally the instances are big, is huge and 

hard to explore.  Finding all exact solutions for such problems 
may be possible with traditional mathematical methods, in 
certain conditions, but it takes a prohibitively long time to find 
the solution.  

Deb reported in [1] the main disadvantages of exact 
methods: lack of global perspective over the problem, general 
inefficiency for discrete variable problems, tendency to be 
blocked to suboptimal solutions when search space is difficult, 
convergence dependency on the initial solution, inefficiency in 
parallel computing environments. All these drawbacks restrain 
applicability of exact techniques to solving small dimensions 
optimization instances. 

This fact led to designing approximate optimization 
techniques and made of heuristics theory a research area with 
fast extent, especially in the last forty years. Heuristic 
algorithms significantly reduce computational time to solve 
hard problems while return good enough solution(s), eventually 
the global optimal one(s).  

Initially, problem-specific heuristics were proposed to 
supplement standard optimization algorithms. Then, many 
research studies tried to unify heuristic mechanisms adequate 
to many problems in (almost) general heuristic algorithms. 
This is the case for heuristic algorithms for combinatorial 
optimization for example.    

The term “metaheuristic”, first used by Glover in [2], is 
used to designate a complex iterative heuristic algorithm, with 
the aim of efficiently explore and exploit the search space in 
order to solve hard problems. Metaheuristics are the most 
adequate algorithms when [3]: 

 few useful information is known about the problem: 

– we don’t know how the optimal solution looks like; 

– we don’t know how to approach finding it in a 
principled way; 

– very little heuristic information about the problem 
exists and brute-force search is out of the question 
because the search space is too large;  

 but if a candidate solution to the problem is provided, 
one can test it and evaluate how good it is. 

Many real world problems fit into this framework. An 
exemple is to find an optimal structure of 15 values for the 
components of some robot (dimensions of arms, type of 
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material for the arms and joints, density for some materials 
etc.). To explore all the points in the 15-dimensions search 
space is unpractical. Moreover, the optimality can imply multi-
objective functions: overall resistance, walk speed, 
manufacturing and maintainance cost, dimensions etc. Another 
example of such hard instance is finding an optimal placement 
of 50 scrap collection centers in a vast area (over 10 000 
houses), when the distances between houses and collection 
centers and housing density determine optimality. 

Additional reasons for the solving difficulty are present: the 
problems often cannot be formulated and solved by a direct 
mathematical approach, many constraints and many parameters 
are involved, the number of possible solutions can be 
enormous, qualitative solutions must be fast identified, 
verifying all the possible solution to find the best one is very 
expensive (often unfeasible), because the quality of a solution 
may vary in time many solutions are necessary. 

To solve such hard problems, the most metaheuristics make 
use of randomness to guide search through the search space. 
This is the reason why metaheuristics is the major subfield of 
stochastic optimization, or stochastic search in a more general 
approach. Also, the term “black box optimization” is 
sometimes associated to metaheuristics, the reason being the 
lack of data about the problem.  

Though the scope is mostly optimization, other fields which 
benefit from metaheuristics are prediction, classification and 
pattern recognition.  

 

II. POPULATION-BASED METAHEURISTCS 

Metaheuristics can be classified in many ways: on the 
existence of memory component, on the number of candidate 
solutions manipulated in each iteration, on the parallelization 
ability, on the dynamics of objective function, on the extent of 
search (local or global search), on the integrality of used 
candidate solutions (incremental construction or complete 
candidate solutions), on the problem class which are adequate 
to [4]. The number of candidate solutions which are 
manipulated in every iteration, the most applied criterion, splits 
the metaheuristics into two major classes: 

 Single-state metaheuristics and  

 Population-based metaheuristics (population methods). 

A single-state metaheuristic uses a single candidate 
solution, complete or partial, at a time. This is updated on 
specified events, and the algorithm runs until the end condition 
is met. The best candidate solution is returned as optimal 
solution. Examples of single-state metaheuristics are: Hill-
climbing, Iterated Local Search, Simulated Annealing, Tabu 
Search and GRASP (Greedy Randomized Adaptive Search 
Procedure). 

A population-based metaheuristic manipulates a collection 
of candidate solutions at a time. These possible solutions 
generally are not independent (meaning that they are not 
parallel hill-climbers): they influence the way the others 
candidate solutions close with the optimum. The main 

advantage of a population method against the single-state 
metaheuristic results from the definition - in final stage, many 
(near) optimal solutions can be returned. Moreover, if difficult 
search space is the case, good solutions are with high 
probability not lost and new candidate solutions with special 
characteristics are to be generated from other solutions in the 
collection.     

The population-based metaheuristics include the vast class 
of Evolutionary Computation techniques and Scatter Search 
method. The Evolutionary Computation methods are naturally 
inspired computational techniques, based on concepts and 
mechanisms in biology, genetics, evolution and nature in 
general. They appear classified in two categories: 

 Evolutionary algorithms: Genetic Algorithms, 
Evolution Strategy, Evolutionary Programming, 
Differential Evolution;  

 Swarm intelligence methods: Ant Colony 
Optimization, Particle Swarm Optimization, Artificial 
Immune Systems, Bees Algorithm, Wasp Behavioral 
Model, Charged System Search, Cuckoo Search, 
Firefly Algorithm, Gravitational Search Algorithm, 
Intelligent Water Drops, Learning Classifier Systems, 
Cultural Algorithms, Self-organization methods etc. 

All these metaheuristics were designed in the last decades; 
some of them in the last 5-10 years. Some are generalizations 
of single-state metaheuristics and some are derived from other 
population-based metaheuristics. Therefore, a comparative 
analysis made on the main methods, which constitutes 
skeletons in the class, is sufficient to obtain pertinent results. 
These principal methods are: Genetic Algorithms (GA), Ant 
Colony Optimization (ACO), Particle Swarm Optimization 
(PSO) and Scatter Search (SS).  

 

III. MAIN POPULATION-BASED METAHEURISTICS: SHORT 

DESCRIPTION  

In the following, the above mentioned population-based 
metaheuristics are to be shortly described. 

A. Evolutionary Algorithms. GAs  

The evolutionary algorithms are metaheuristics based on 
applying in computer science principles derived from 
evolutionary biology: inheritance, genetic mutation, natural 
selection and crossover. In major cases, the nature follows two 
simple principles: 

 If by genetic processes a descendant with above 
average performance is generated, it has a higher 
survival rate than an average individual and hence it 
has higher chances to produce descendants which 
inherit good traits than an average individual; 

 If a below average performance individual is 
generated, it does not survive long enough and 
therefore it will be eliminated from the evolving 
population. 
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All the evolutionary algorithms (mentioned in the previous 
section) are based on evolutionary principles, but operate 
differently and are designed for different categories of 
problems. The distinction refers to the types of alterations 
required to candidate solutions when generate descendants, to 
the parents selection methods and to the data structures used in 
solution representation [5]. 

The notable characteristics of evolution strategies are the 
normal distributed mutation, the self-adapting parameters 
values and  two populations existence - the parents’ population 
and the offspring’ population. In GAs, the focus is on genetic 
operators simulating the natural evolution. In evolutionary 
programming, on the other hand, the focus is put on the 
behavioral relation between parents and offspring. 

GAs are the most common evolutionary algorithm, applied 
and tested on almost every type of adequate problem. They are 
parallel algorithms which transform a population of 
mathematical objects (possible solutions of the problem) in a 
new population using three operators similar to evolutionary 
processes in nature: selection („best survives” principle), 
sexual genetic crossover and random mutation (genotype 
alteration) rarely applied. The search is guided by the fitness 
function, which is the performance measure of the individuals. 
The individuals can have any form, from string to tree [6].  

In short, a GA initially generates a population of feasible 
pseudo-random candidate solutions. In every step, called 
generation, the algorithm evaluates each individual in 
population, selects parents in the population, applies crossover 
to obtain new candidate solutions from selected parents and 
applies mutation to favor diversification in population. The 
newer individuals are added to the current population or, if a 
fixed dimension population is used, an accept-reject 
mechanism determines the content of the new population, 
which becomes current in the next generation. After many 
generations (hundreds or thousands), the best individual(s) in 
the last current population is/are returned as optimal 
solution(s).        

By crossover, the “genetic material” of parents (in fact, the 
parents’ structure and data) is combined to produce offspring 
which inherit characteristics of them. Mutation introduces new 
genetic material in population, thus completing the crossover 
function, which regularly cannot do that. The selection operator 
interferes in guiding the evolution by favouring survival of the 
fittest.  

GAs are, among other methods, evolutionary search 
algorithms. They can be applied to performance-based search 
problems - problems where (1) adequate performance functions 
(fitness) can be defined so that members in the population can 
be fitness-ordered and (2) the set of solutions contains some 
possible solutions besides solutions that perfectly solve the 
problem [7]. 

B. ACO 

Ant Colony Optimization, proposed by Marco Dorigo in 
1992 [8], simulates the group behavior of ants which have the 
ability to find the shortest path to the food, by pheromone 
communication. The pheromone quantity accumulated on 

every covered route being proportional with covering 
frequency, it guides the colony to identifiy the optimal solution 
(the optimal route in the graph of routes identified by all the 
ants). In computer science, ACO is adequate to combinatorial 
optimization problems that try to identify optimal paths to 
goals.  

To apply ACO, the graph of candidate components to be 
added to solutions has to be built. Initially, all the components 
have zero pheromone. At every iteration of ACO procedure, a 
number of agents called artificial ants, are launched in the 
graph of components and each of them builds a solution (a path 
in graph), step by step, starting from a random valid 
component. At every step, the pheromone for the visited node 
is updated and the quality of partial solution is updated. The 
pheromone quantity on the chosen component is proportional 
with the partial solution quality and inverse proportional with 
pheromone evaporation rate (if the procedure includes this 
mechanism to avoid the fast convergence to suboptimal regions 
of search space) [9, 10]. 

Interesting in ACO is the fact that agents moves 
independently and concurrently in the graph and every agent is 
complex enough to find a solution but it is ordinarily poor 
qualitative. The good solutions emerge only as a result of 
collective interractions between agents. This is a distributed 
learning process where individual agents are not adaptive, but 
they adaptively modify the way in which the process is 
perceived by other agents. On the final quality of a solution, 
the individual influence of an agent is not relevant, but the 
colony influence is a major one. 

As we can see, the overall contrast between ACO and GA 
consists in the different way to generate candidate solutions. 

The notable feature of ACO is using experience of agents 
in previous stages to guide the search through pheromone on 
candidate components. 

C. PSO 

Particle Swarm Optimization, proposed by Kennedy and 
Eberhart in 1995 [11], imitates the group behavior in birds 
flock, fish banks and other living beings, regarding the 
efficiency in attaining a destination.  

The candidate solutions in PSO, named particles, are points 
or surfaces in metric multidimensional spaces, with a velocity 
and position associated. In PSO algorithm, the particles “fly” in 
the search space following the current optimal particles on 
basis of the adaptable speed which directs their moves, and on 
basis of a memory which retains the best visited location in the 
past by all agents. 

The PSO advantages are the simplicity of implementation 
and the low number of parameters to adjust, but to note the 
difficulties of the method to avoid the local optima. 

D. Scatter Search 

SS, designed by Glover in 1986 [2], is also an evolutionary 
method, being distinct from other evolutionary computation 
methods by the manner of combining candidate solutions to 
create new ones and by the process of exploiting them. The SS 
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method, built on the principles regarding the surrogate 
constraint framework, is organized to capture information not 
present in the original candidate solutions, named vectors, and 
uses auxiliary heuristic methods both for selecting the elements 
to be combined and for generating new vectors [12]. 

The candidate solutions in SS are points or surfaces in 
Euclidean space, called vectors. The method uses a small 
population of vectors (generally below 20 individuals), called 
reference set, that evolves by a procedure which selects in a 
systematic way vectors to be combined in order to generate 
new vectors. Two, three or many vectors can be combined at a 
time to generate new combinations. 

Initially, a diverse good solution vectors reference set is 
generated. Then, new solution vectors are generated as 
structured combinations of two or many vectors in the current 
reference set and a number of the best such solutions are 
chosen to be part of the next reference set after an heuristic 
improvement is made on them; this is repeated until the 
reference set is unchanged. To diversify the solution set the 
process is re-started from the first step and all these are 
repeated a fixed number of iterations.   

The main characteristic of SS is that its structured 
combinations are designed to create weighted centers of 
selected subregions in the search space [12]. The method 

allows unfeasible vectors to be added to the reference set, with 
the goal of maintaining a diverse set. SS uses also an adaptive 
memory, by keeping the good solutions in a diverse collection 
of elite solutions. Both diversity of sets and quality of solutions 
participate in guiding the search towards favorable regions. 

Path Relinking is a generalization of Scatter Search, where 
paths between and beyond selected solution vectors in 
neighborhood space are generated, instead of vector 
combinations in Euclidean space [13]. 

Comparing to GAs, that work with large populations to 
maintain a good enough diversity, SS systematically injects 
diversity to the reference set by combination mechanisms [12].  

 

IV. COMPARATIVE ANALYSIS 

In this section, GAs, ACO, PSO and SS are compared on 
many criteria (see Table 1): the candidate solution form, the 
needed problem representation, the search guiding mechanism, 
general applying scope and other features. 

As Table 1 shows, the analyzed evolutionary computation 
techniques (GA, ACO and PSO) are more similar in many 
aspects, in contrast with SS, which is not a stochastic 
metaheuristic.

 

TABLE I.  GA, ACO, PSO, SS: COMPARATIVE ANALYSIS  

Comparing criteria 
Metaheuristic 

GA ACO PSO SS 

Form of candidate 

solution 

Individual (representation of 

an artificial chromosome) 
Trail / Artificial ant 

Particle with speed  

and position 
Solution vector 

Candidate solutions are Complete 
Partial (zero or many 
componenents) 

Complete Complete 

Problem representation 
Genetic encoding  

for the individuals 

Graph of  

candidate components 

Metric encoding for the 

particles 

Metric encoding for the 

vectors in Euclidean 
space 

Search guided by 

Genetic selection (to transmit 

genetic characters to the next  
generations) based on the 

fitness of  individuals 

Pheromone (historic 

quality) on the candidate 

components  

Fitness of the particles  

Diversity of reference 

set and quality of 
solution vectors, elite 

solutions set 

Adequate for 

Any type of combination of 
any type of values  

(e.g. string, tree) 

Identifying paths to goals 
Identifying paths to 
destinations, metric (real) 

multidimensional spaces 

Metric 
(multidimensional) 

spaces 

Other features 

 Population initialization + 
update in generations 

 Genetic operators: 
selection, crossover, 

mutation 

 Agents cooperate 

 The agent’s experience 
influences the search 

 Population nitialization + 

update in generations 

 A guided mutation  

 No use of selection and 
crossover operators 

 The structured 
combinations are 

designed so that  

weighted centers of 
selected subregions 

are created 

 Big population dimension ( 100-10 000); 

 Stochastic methods;  

 Robust to loss of  individual candidate solutions and to environmental changes; 

 Simulate natural intelligence emerged in populations of living beings; 

 The collective behavior in the self-organizing, descentralized system (the population) prove 
to be intelligent; the candidate solutions’ intelligence is not good enough to optimally solve 

the problem;  

 Candidate solutions communicate, direct or indirect, with each other; 

 Achieve a parallel search in the search space; 

 Co-evolution of candidate solutions, mainly based on  group experience;  

 Work with a population of simple agents (candidate solutions), which interact locally and 
with the environment; 

 Small population 

dimension (5-20) 
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Comparing criteria 
Metaheuristic 

GA ACO PSO SS 

 Need an adecquate setting of parameters’ values; 

 Assign a quality measure to each candidate solution, that guides the search towards beneficial regions; 

 Return multiple (different) solutions. 

 

 

V. CONCLUSION 

For the hard (optimization) problems, as most real world 
problems are, the traditional mathematical methods prove to be 
inadequate; the main reason for that is their time computational 
expensiveness, even infeasibility, in returning optimal 
solutions. Instead, metaheuristics, even if do not guarantee to 
find the optimal solution(s), they find near optimal solution(s) 
in a highly reduced computational time. For the most practical 
hard problems, this kind of solving is good enough.   

Metaheuristics are young methods, designed after ‘70s. 
Most of them were proposed in the last two decades and many 
are presently developed.  

The population-based metaheuristics are evolutionary 
algorithms, where evolution can be viewed as a travel in search 
space, on many ways, in many generations, towards regions 
with better and better performance. Such methods are Genetic 
Algorithms, Ant Colony Optimization, Particle Swarm 
Optimization, Scatter Search, Artificial Immune Systems, Bees 
Algorithm, Firefly Algorithm etc.  

The achieved comparative analysis is a useful guide when 
try to apply one or many metaheuristic(s) to a problem, firstly 
regarding the problem representation and candidate solutions. 
The appropriateness for the problem type is another key aspect 
in choosing a metaheuristic. The results offer a global 
perspective over GA, ACO, PSO and Scatter Search, making 
easier to approach any of these on a specific problem, both for 
a beginner and for the advanced users.       
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