

84

International Journal of

Science and Engineering Investigations vol. 1, issue 8, September 2012

ISSN: 2251-8843

Population-Based Metaheuristics: A Comparative Analysis

Elena Simona Nicoară

Information Technology, Mathematics and Physics Department, Petroleum-Gas University of Ploieşti, Ploieşti, Romania
 (snicoara77@yahoo.com, snicoara@upg-ploiesti.ro)

Abstract- To optimally solve hard optimization problems in
real life, many methods were designed and tested. The
metaheuristics proved to be the generally adequate techniques,
while the exact traditional optimization mathematical methods
are prohibitively expensive in computational time. The
population-based metaheuristics, which manipulate a set of
candidate solutions at a time, have advantages over the single-
state methods and therefore are preferred techniques when hard
problems are to be solved. Such metaheuristics include Genetic
Algorithms, Ant Colony Optimization, Particle Swarm
Optimization, Scatter Search and many more methods. In this
survey a comparative analysis of the main population-based
metaheuristics was accomplished; the focus is on the
fundamental properties regarding operational principle, on the
adequate problems, the advantages and disadvantages in use.

Keywords- metaheuristic; candidate solution; optimization.

I. INTRODUCTION TO METAHEURISTICS

A wide class of real world problems is optimization
problems. In economics (corporate finance, investments,
production, distribution, purchasing, human resources), in
industry (mechanics, engineering, airlines and trucking, oil and
gas, electric power), in agriculture, in financial services and
many other fields, optimality is a central issue. We try to
maximize the profit, the flow, the resistance, the efficiency, the
utility, or to minimize the cost, the time spent, the loss, the
risks etc. while some constraints are satisfied. To note that
many times, multiple antagonist objectives have to be
simultaneously fulfilled.

The first methods proposed to solve optimization problems
were the exact optimization techniques: the traditional
mathematical optimization methods (direct methods and
gradient methods), the enumerative methods (guided or
unguided), Lagrangian relaxation and decomposition strategies.
These optimization methods are designed to find all the global
optimal solutions to the problems. A very good characteristic!
Why need other optimization techniques?

When little information about the problem is known, or the
complexity level is high, or the instance dimensions are big, all
the beautiful mathematical tools become mostly unhelpful.
There are many real world problems that are multimodal,
nonlinear, deceptive and multi-objective. The search space for
such problems, if additionally the instances are big, is huge and

hard to explore. Finding all exact solutions for such problems
may be possible with traditional mathematical methods, in
certain conditions, but it takes a prohibitively long time to find
the solution.

Deb reported in [1] the main disadvantages of exact
methods: lack of global perspective over the problem, general
inefficiency for discrete variable problems, tendency to be
blocked to suboptimal solutions when search space is difficult,
convergence dependency on the initial solution, inefficiency in
parallel computing environments. All these drawbacks restrain
applicability of exact techniques to solving small dimensions
optimization instances.

This fact led to designing approximate optimization
techniques and made of heuristics theory a research area with
fast extent, especially in the last forty years. Heuristic
algorithms significantly reduce computational time to solve
hard problems while return good enough solution(s), eventually
the global optimal one(s).

Initially, problem-specific heuristics were proposed to
supplement standard optimization algorithms. Then, many
research studies tried to unify heuristic mechanisms adequate
to many problems in (almost) general heuristic algorithms.
This is the case for heuristic algorithms for combinatorial
optimization for example.

The term “metaheuristic”, first used by Glover in [2], is
used to designate a complex iterative heuristic algorithm, with
the aim of efficiently explore and exploit the search space in
order to solve hard problems. Metaheuristics are the most
adequate algorithms when [3]:

 few useful information is known about the problem:

– we don’t know how the optimal solution looks like;

– we don’t know how to approach finding it in a
principled way;

– very little heuristic information about the problem
exists and brute-force search is out of the question
because the search space is too large;

 but if a candidate solution to the problem is provided,
one can test it and evaluate how good it is.

Many real world problems fit into this framework. An
exemple is to find an optimal structure of 15 values for the
components of some robot (dimensions of arms, type of

International Journal of Science and Engineering Investigations, Volume 1, Issue 8, September 2012 85

www.IJSEI.com Paper ID: 10812-17 ISSN: 2251-8843

material for the arms and joints, density for some materials
etc.). To explore all the points in the 15-dimensions search
space is unpractical. Moreover, the optimality can imply multi-
objective functions: overall resistance, walk speed,
manufacturing and maintainance cost, dimensions etc. Another
example of such hard instance is finding an optimal placement
of 50 scrap collection centers in a vast area (over 10 000
houses), when the distances between houses and collection
centers and housing density determine optimality.

Additional reasons for the solving difficulty are present: the
problems often cannot be formulated and solved by a direct
mathematical approach, many constraints and many parameters
are involved, the number of possible solutions can be
enormous, qualitative solutions must be fast identified,
verifying all the possible solution to find the best one is very
expensive (often unfeasible), because the quality of a solution
may vary in time many solutions are necessary.

To solve such hard problems, the most metaheuristics make
use of randomness to guide search through the search space.
This is the reason why metaheuristics is the major subfield of
stochastic optimization, or stochastic search in a more general
approach. Also, the term “black box optimization” is
sometimes associated to metaheuristics, the reason being the
lack of data about the problem.

Though the scope is mostly optimization, other fields which
benefit from metaheuristics are prediction, classification and
pattern recognition.

II. POPULATION-BASED METAHEURISTCS

Metaheuristics can be classified in many ways: on the
existence of memory component, on the number of candidate
solutions manipulated in each iteration, on the parallelization
ability, on the dynamics of objective function, on the extent of
search (local or global search), on the integrality of used
candidate solutions (incremental construction or complete
candidate solutions), on the problem class which are adequate
to [4]. The number of candidate solutions which are
manipulated in every iteration, the most applied criterion, splits
the metaheuristics into two major classes:

 Single-state metaheuristics and

 Population-based metaheuristics (population methods).

A single-state metaheuristic uses a single candidate
solution, complete or partial, at a time. This is updated on
specified events, and the algorithm runs until the end condition
is met. The best candidate solution is returned as optimal
solution. Examples of single-state metaheuristics are: Hill-
climbing, Iterated Local Search, Simulated Annealing, Tabu
Search and GRASP (Greedy Randomized Adaptive Search
Procedure).

A population-based metaheuristic manipulates a collection
of candidate solutions at a time. These possible solutions
generally are not independent (meaning that they are not
parallel hill-climbers): they influence the way the others
candidate solutions close with the optimum. The main

advantage of a population method against the single-state
metaheuristic results from the definition - in final stage, many
(near) optimal solutions can be returned. Moreover, if difficult
search space is the case, good solutions are with high
probability not lost and new candidate solutions with special
characteristics are to be generated from other solutions in the
collection.

The population-based metaheuristics include the vast class
of Evolutionary Computation techniques and Scatter Search
method. The Evolutionary Computation methods are naturally
inspired computational techniques, based on concepts and
mechanisms in biology, genetics, evolution and nature in
general. They appear classified in two categories:

 Evolutionary algorithms: Genetic Algorithms,
Evolution Strategy, Evolutionary Programming,
Differential Evolution;

 Swarm intelligence methods: Ant Colony
Optimization, Particle Swarm Optimization, Artificial
Immune Systems, Bees Algorithm, Wasp Behavioral
Model, Charged System Search, Cuckoo Search,
Firefly Algorithm, Gravitational Search Algorithm,
Intelligent Water Drops, Learning Classifier Systems,
Cultural Algorithms, Self-organization methods etc.

All these metaheuristics were designed in the last decades;
some of them in the last 5-10 years. Some are generalizations
of single-state metaheuristics and some are derived from other
population-based metaheuristics. Therefore, a comparative
analysis made on the main methods, which constitutes
skeletons in the class, is sufficient to obtain pertinent results.
These principal methods are: Genetic Algorithms (GA), Ant
Colony Optimization (ACO), Particle Swarm Optimization
(PSO) and Scatter Search (SS).

III. MAIN POPULATION-BASED METAHEURISTICS: SHORT

DESCRIPTION

In the following, the above mentioned population-based
metaheuristics are to be shortly described.

A. Evolutionary Algorithms. GAs

The evolutionary algorithms are metaheuristics based on
applying in computer science principles derived from
evolutionary biology: inheritance, genetic mutation, natural
selection and crossover. In major cases, the nature follows two
simple principles:

 If by genetic processes a descendant with above
average performance is generated, it has a higher
survival rate than an average individual and hence it
has higher chances to produce descendants which
inherit good traits than an average individual;

 If a below average performance individual is
generated, it does not survive long enough and
therefore it will be eliminated from the evolving
population.

International Journal of Science and Engineering Investigations, Volume 1, Issue 8, September 2012 86

www.IJSEI.com Paper ID: 10812-17 ISSN: 2251-8843

All the evolutionary algorithms (mentioned in the previous
section) are based on evolutionary principles, but operate
differently and are designed for different categories of
problems. The distinction refers to the types of alterations
required to candidate solutions when generate descendants, to
the parents selection methods and to the data structures used in
solution representation [5].

The notable characteristics of evolution strategies are the
normal distributed mutation, the self-adapting parameters
values and two populations existence - the parents’ population
and the offspring’ population. In GAs, the focus is on genetic
operators simulating the natural evolution. In evolutionary
programming, on the other hand, the focus is put on the
behavioral relation between parents and offspring.

GAs are the most common evolutionary algorithm, applied
and tested on almost every type of adequate problem. They are
parallel algorithms which transform a population of
mathematical objects (possible solutions of the problem) in a
new population using three operators similar to evolutionary
processes in nature: selection („best survives” principle),
sexual genetic crossover and random mutation (genotype
alteration) rarely applied. The search is guided by the fitness
function, which is the performance measure of the individuals.
The individuals can have any form, from string to tree [6].

In short, a GA initially generates a population of feasible
pseudo-random candidate solutions. In every step, called
generation, the algorithm evaluates each individual in
population, selects parents in the population, applies crossover
to obtain new candidate solutions from selected parents and
applies mutation to favor diversification in population. The
newer individuals are added to the current population or, if a
fixed dimension population is used, an accept-reject
mechanism determines the content of the new population,
which becomes current in the next generation. After many
generations (hundreds or thousands), the best individual(s) in
the last current population is/are returned as optimal
solution(s).

By crossover, the “genetic material” of parents (in fact, the
parents’ structure and data) is combined to produce offspring
which inherit characteristics of them. Mutation introduces new
genetic material in population, thus completing the crossover
function, which regularly cannot do that. The selection operator
interferes in guiding the evolution by favouring survival of the
fittest.

GAs are, among other methods, evolutionary search
algorithms. They can be applied to performance-based search
problems - problems where (1) adequate performance functions
(fitness) can be defined so that members in the population can
be fitness-ordered and (2) the set of solutions contains some
possible solutions besides solutions that perfectly solve the
problem [7].

B. ACO

Ant Colony Optimization, proposed by Marco Dorigo in
1992 [8], simulates the group behavior of ants which have the
ability to find the shortest path to the food, by pheromone
communication. The pheromone quantity accumulated on

every covered route being proportional with covering
frequency, it guides the colony to identifiy the optimal solution
(the optimal route in the graph of routes identified by all the
ants). In computer science, ACO is adequate to combinatorial
optimization problems that try to identify optimal paths to
goals.

To apply ACO, the graph of candidate components to be
added to solutions has to be built. Initially, all the components
have zero pheromone. At every iteration of ACO procedure, a
number of agents called artificial ants, are launched in the
graph of components and each of them builds a solution (a path
in graph), step by step, starting from a random valid
component. At every step, the pheromone for the visited node
is updated and the quality of partial solution is updated. The
pheromone quantity on the chosen component is proportional
with the partial solution quality and inverse proportional with
pheromone evaporation rate (if the procedure includes this
mechanism to avoid the fast convergence to suboptimal regions
of search space) [9, 10].

Interesting in ACO is the fact that agents moves
independently and concurrently in the graph and every agent is
complex enough to find a solution but it is ordinarily poor
qualitative. The good solutions emerge only as a result of
collective interractions between agents. This is a distributed
learning process where individual agents are not adaptive, but
they adaptively modify the way in which the process is
perceived by other agents. On the final quality of a solution,
the individual influence of an agent is not relevant, but the
colony influence is a major one.

As we can see, the overall contrast between ACO and GA
consists in the different way to generate candidate solutions.

The notable feature of ACO is using experience of agents
in previous stages to guide the search through pheromone on
candidate components.

C. PSO

Particle Swarm Optimization, proposed by Kennedy and
Eberhart in 1995 [11], imitates the group behavior in birds
flock, fish banks and other living beings, regarding the
efficiency in attaining a destination.

The candidate solutions in PSO, named particles, are points
or surfaces in metric multidimensional spaces, with a velocity
and position associated. In PSO algorithm, the particles “fly” in
the search space following the current optimal particles on
basis of the adaptable speed which directs their moves, and on
basis of a memory which retains the best visited location in the
past by all agents.

The PSO advantages are the simplicity of implementation
and the low number of parameters to adjust, but to note the
difficulties of the method to avoid the local optima.

D. Scatter Search

SS, designed by Glover in 1986 [2], is also an evolutionary
method, being distinct from other evolutionary computation
methods by the manner of combining candidate solutions to
create new ones and by the process of exploiting them. The SS

International Journal of Science and Engineering Investigations, Volume 1, Issue 8, September 2012 87

www.IJSEI.com Paper ID: 10812-17 ISSN: 2251-8843

method, built on the principles regarding the surrogate
constraint framework, is organized to capture information not
present in the original candidate solutions, named vectors, and
uses auxiliary heuristic methods both for selecting the elements
to be combined and for generating new vectors [12].

The candidate solutions in SS are points or surfaces in
Euclidean space, called vectors. The method uses a small
population of vectors (generally below 20 individuals), called
reference set, that evolves by a procedure which selects in a
systematic way vectors to be combined in order to generate
new vectors. Two, three or many vectors can be combined at a
time to generate new combinations.

Initially, a diverse good solution vectors reference set is
generated. Then, new solution vectors are generated as
structured combinations of two or many vectors in the current
reference set and a number of the best such solutions are
chosen to be part of the next reference set after an heuristic
improvement is made on them; this is repeated until the
reference set is unchanged. To diversify the solution set the
process is re-started from the first step and all these are
repeated a fixed number of iterations.

The main characteristic of SS is that its structured
combinations are designed to create weighted centers of
selected subregions in the search space [12]. The method

allows unfeasible vectors to be added to the reference set, with
the goal of maintaining a diverse set. SS uses also an adaptive
memory, by keeping the good solutions in a diverse collection
of elite solutions. Both diversity of sets and quality of solutions
participate in guiding the search towards favorable regions.

Path Relinking is a generalization of Scatter Search, where
paths between and beyond selected solution vectors in
neighborhood space are generated, instead of vector
combinations in Euclidean space [13].

Comparing to GAs, that work with large populations to
maintain a good enough diversity, SS systematically injects
diversity to the reference set by combination mechanisms [12].

IV. COMPARATIVE ANALYSIS

In this section, GAs, ACO, PSO and SS are compared on
many criteria (see Table 1): the candidate solution form, the
needed problem representation, the search guiding mechanism,
general applying scope and other features.

As Table 1 shows, the analyzed evolutionary computation
techniques (GA, ACO and PSO) are more similar in many
aspects, in contrast with SS, which is not a stochastic
metaheuristic.

TABLE I. GA, ACO, PSO, SS: COMPARATIVE ANALYSIS

Comparing criteria
Metaheuristic

GA ACO PSO SS

Form of candidate

solution

Individual (representation of

an artificial chromosome)
Trail / Artificial ant

Particle with speed

and position
Solution vector

Candidate solutions are Complete
Partial (zero or many
componenents)

Complete Complete

Problem representation
Genetic encoding

for the individuals

Graph of

candidate components

Metric encoding for the

particles

Metric encoding for the

vectors in Euclidean
space

Search guided by

Genetic selection (to transmit

genetic characters to the next
generations) based on the

fitness of individuals

Pheromone (historic

quality) on the candidate

components

Fitness of the particles

Diversity of reference

set and quality of
solution vectors, elite

solutions set

Adequate for

Any type of combination of
any type of values

(e.g. string, tree)

Identifying paths to goals
Identifying paths to
destinations, metric (real)

multidimensional spaces

Metric
(multidimensional)

spaces

Other features

 Population initialization +
update in generations

 Genetic operators:
selection, crossover,

mutation

 Agents cooperate

 The agent’s experience
influences the search

 Population nitialization +

update in generations

 A guided mutation

 No use of selection and
crossover operators

 The structured
combinations are

designed so that

weighted centers of
selected subregions

are created

 Big population dimension ( 100-10 000);

 Stochastic methods;

 Robust to loss of individual candidate solutions and to environmental changes;

 Simulate natural intelligence emerged in populations of living beings;

 The collective behavior in the self-organizing, descentralized system (the population) prove
to be intelligent; the candidate solutions’ intelligence is not good enough to optimally solve

the problem;

 Candidate solutions communicate, direct or indirect, with each other;

 Achieve a parallel search in the search space;

 Co-evolution of candidate solutions, mainly based on group experience;

 Work with a population of simple agents (candidate solutions), which interact locally and
with the environment;

 Small population

dimension (5-20)

International Journal of Science and Engineering Investigations, Volume 1, Issue 8, September 2012 88

www.IJSEI.com Paper ID: 10812-17 ISSN: 2251-8843

Comparing criteria
Metaheuristic

GA ACO PSO SS

 Need an adecquate setting of parameters’ values;

 Assign a quality measure to each candidate solution, that guides the search towards beneficial regions;

 Return multiple (different) solutions.

V. CONCLUSION

For the hard (optimization) problems, as most real world
problems are, the traditional mathematical methods prove to be
inadequate; the main reason for that is their time computational
expensiveness, even infeasibility, in returning optimal
solutions. Instead, metaheuristics, even if do not guarantee to
find the optimal solution(s), they find near optimal solution(s)
in a highly reduced computational time. For the most practical
hard problems, this kind of solving is good enough.

Metaheuristics are young methods, designed after ‘70s.
Most of them were proposed in the last two decades and many
are presently developed.

The population-based metaheuristics are evolutionary
algorithms, where evolution can be viewed as a travel in search
space, on many ways, in many generations, towards regions
with better and better performance. Such methods are Genetic
Algorithms, Ant Colony Optimization, Particle Swarm
Optimization, Scatter Search, Artificial Immune Systems, Bees
Algorithm, Firefly Algorithm etc.

The achieved comparative analysis is a useful guide when
try to apply one or many metaheuristic(s) to a problem, firstly
regarding the problem representation and candidate solutions.
The appropriateness for the problem type is another key aspect
in choosing a metaheuristic. The results offer a global
perspective over GA, ACO, PSO and Scatter Search, making
easier to approach any of these on a specific problem, both for
a beginner and for the advanced users.

REFERENCES

[1] K. Deb, “Multi-objective genetic algorithms: Problem difficulties and
construction of test problems”, Evol. Comp. J, vol. 7, pp. 205-230, 1999.

[2] F. Glover, "Future Paths for Integer Programming and Links to Artificial
Intelligence", Comp. Oper. Res., vol. 13, pp. 533–549, 1986.

[3] S. Luke, Essentials of metaheuristics, Lulu, online version 1.1, 2011.

[4] E. S. Nicoară, GA-based Control of Multi-objective Flexible Job Shop
Scheduling Processes (in Romanian), Ph.D. Dissertation, Informatics
Dept., Petroleum-Gas University of Ploieşti, Ploiesti, Romania, 2011.

[5] D. B. Fogel, Evolutionary Computation: Toward a New Philosophy of
Machine Intelligence, Piscataway, NJ: IEEE Press, 1995.

[6] J. H. Holland, Adaptation in Natural and Artificial Systems, MIT Press
The University of Michigan Press, Ann Arbor, 1975.

[7] O. J. Sharpe, Towards a rational methodology for using evolutionary
search algorithms, Ph.D. Dissertation, School of Cognitive and
Computing Sciences, University of Sussex, 2000.

[8] M. Dorigo, Optimization, Learning and Natural Algorithms, Ph.D.
Dissertation (in Italian), Politecnico di Milano, Italy, 1992.

[9] M. Dorigo and G. Di Caro, The ant colony optimization meta-heuristic,
in New Ideas in Optimization, D. Corne, M. Dorigo, and F. Glover,
Eds., McGraw-Hill, 1999.

[10] M. Dorigo and T. Stutzle, „The Ant Colony Optimization metaheuristic:
algorithms, application and advances”, Int. S. Oper. Res. Man. Sc., vol.
57, Handbook of Metaheuristics, F. Glover and G. Kochenberger, Eds.,
Kluwer Academic Publishers, Norwell, MA, 2002, pp. 251-285.

[11] J. Kennedy and R. Eberhart, “Particle swarm optimization”, Proc. of
IEEE Int. C. on Neural Networks, Perth, Australia, IEEE Service Center,
Piscataway, NJ, 1995, pp. 1942-1948.

[12] F. Glover, M. Laguna, and R. Martí, “Fundamentals of Scatter Search
and Path Relinking”, Contr. Cyb., vol. 39, 2000, pp. 653-684.

[13] F. Glover, “Genetic Algorithms and Scatter Search: Unsuspected
Potentials”, Stat. Comp., vol. 4, 1994, pp. 131-140.

