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Abstract- The scope of inverted pendulum has been widely studied
as one of the notable research with respect to standing in balance.
The concept of this pendulum is similar to missile guidance, meaning
that the center of drag is ahead that of gravity. Mathematical model
of inverted pendulum on a chart is moreover presented in this paper.
Various rewarding parameters are proposed from the displacement of
the pivot, angular rotation, to external force exerted on the carriage
so as to gain its equilibrium points and the linearized systems.
Due to the severe risk of instability, a reliable closed-loop state
feedback controller is designed to stabilize in upright position, even
with large deviations. The specific concept proposed is to apply the
canonical form of computing the determinant of gain K leading to
Kd. The results show that the constructed design can maintain the
stability of the system by applying three sorts of initial condition and
choosing sampling time T under 0.2 with small possible degrading
performance.
Keywords- State-Feedback, Discrete-Time Control, Controllable
Canonical Form, Inverted Pendulum

I. INTRODUCTION

The interest of inverted pendulum has increasingly been
popular from the various control problem and its historical
scope has been widely studied by [1]. The further concept of
the pendulum is the wheeled inverted pendulum leading to di-
vergent applications, such as in robotic and vehicle with adap-
tive self-dynamical balancing [2], anti-slip balancing control
[3] and various optimal controls [4]. Indeed, the stability of the
pendulum lies in the mathematical theory as presented in [5]
using partial differential equation (PDE) with parametrization
in a larger class of port-controlled Hamiltonian. Furthermore,
the appropriate control [6], the design of the trajectory tracking
[7] along with some optimizations [8] affect the equilibrium
of the pendulum. However, those ideas always coincide with
the complexity of the non-linear system so that the swing-up
control applying cascade scheme is required [9], [10] and it
needs to be implemented in the real environment as in [11].

Moreover, the stable manifold design is also preferable as
mentioned by [12]. The non-linearity along with hybrid control
and its application are broadly discussed in [13], [14], [15],
[16], and [17].

In this paper, the linearized and non-linear system is de-
signed based on two different properties along with some
further influences due to these variables. The normal state-
space from three different characteristics of initial condition
is designed in order to examine the properties of controllability
and observability which are the key information of construct-
ing the controller. The merged concept of state-feedback with
canonical form from [18], [19], [20], [21], [22], and [23] is
then introduced to obtain the best value of K leading to Kd

which is then simulated to perform the system. The influence
of time sampling is used to examine the potency of degrading
performance both in continuous- and discrete-system. The
structure of this paper is started by introduction regarding the
important of studying the inverted pendulum along with some
development and constraints in first and the second chapter
in turn. The third stage comprises the mathematical model
dealing with the whole material while the following constitutes
the illustrative example. The last is the conclusion being ended
by some acknowledgement.

II. PROBLEM FORMULATION

This paper presents a mathematical modelling on inverted
pendulum as shown in Fig.1 with the following qualitative
objectives:

1) The problem is initiated from showing the right state-
space in terms of nominally circular solution by consid-
ering small deviations of the state variables;

2) Those small deviations are measured in terms of the
small |φ(t)| < π

4 ,∀t ≥ 0, the variables of φ̇ and ṡ should
be maintained from excessively large ∀t ≥ 0; and

3) The states are derived with different initial condition
with respect to the design of gain K
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III. MATHEMATICAL MODELS

From the proposed aims, the foundation lies in the math-
ematical design of inverted pendulum along with the core
feedback system. The followings are to design those two key
parameters namely state-space and its properties along with
the state-feedback.

A. Design of Inverted Pendulum

Analytical scheme in Fig.1a is deeply explained in order to
obtain the physical system being divided into two directions,
horizontal and vertical. Keep in mind that the centre of gravity
is coordinated as (Sx,Sy) in the pendulum rod. As for the
forces, summing the the free-body diagram of the chart in the
horizontal force axis is defined as follow:

M
∂2

∂t2
s(t) +m

∂2

∂t2
Sx(t) + F ṡ = µ(t) (1)

where the elaboration of the centre with respect to the distant
s and angle φ is described as,

Sx = s+ L sinφ Sy = L cosφ (2)

from Eq.(1) and (2), it is rewarding to understand the basis
concept of differential which then affects the formula. As
regards the (sin) scenario, the first and the second derivative
is shown using the formula u′v + uv′ as in the following,

∂ sinφ

∂t
= φ̇ cosφ

∂2 sinφ

∂t2
= φ̈ cosφ− φ̇2 sinφ (3)

with respect to the (cos), the derivative concept is exactly the
same as that of in (sin) as portrayed below,

∂ cosφ

∂t
= −φ̇ sinφ

∂2 cosφ

∂t2
= −φ̈ sinφ− φ̇2 cosφ (4)

as for the defined variables on Fig.1a, M and m is the mass
of the carriage (chart) and the pendulum respectively while
L is the length of the pendulum. s(t) is the displacement of
the pivot in the x−axis and φ(t) is the angular rotation of
the pendulum whereas µ(t) is the external force exerted on
the carriage. In the bottom of the chart, there is a friction
with certain coefficient and the system is influenced by the
gravitational acceleration. According to Eq.(3) and (4), the
formulation of the whole system in Eq.(1) is becoming in the
following:

(M +m)s̈+mLφ̈ cosφ−mLφ̇2 sinφ+ F ṡ = µ(t) (5)

suppose that if the point mass is relatively small, it can be
ignored meaning that the chart contains only the rod without
any concern to the rope. Moreover, assume that the there is no
slip in the hinge between pendulum and the carriage so that
the equation will be shown as follows:

Ms̈+ F ṡ− µ(t) = 0 (6)

(a)

(b)

Fig. 1: (a) Inverted Pendulum on a chart, (b) Force components in
torque balance

Moving to another direction so as to gain the second equa-
tion of this system, summing the forces being perpendicular
to the pendulum relates to the torque balance on the system as
depicted in Fig. 1b. In this condition, the torque on the mass
due to the acceleration and the gravity force are balancing so
that the elaborated equation can be described in the following,
such that:

FxL cosφ− FyL sinφ = mgL sinφ (7)

where Fx and Fy equal to

Fx := max = m
(
s̈+ Lφ̈ cosφ− Lφ̇2 sinφ

)
(8)

Fy := may = m
(
−Lφ̈ sinφ− Lφ̇2 cosφ

)
(9)

with,

ax =
∂2

∂t2
Sx and ay =

∂2

∂t2
Sy

the combination of the formulas in the Eq.(7), (8) and (9)
generates another further equation as shown below, therefore:

φ̈+
1

L
s̈ cosφ− g

L
sinφ = 0 (10)

B. State-Space and Its Properties

The findings in Eq.(6) results in acceleration s̈ which is
applied in producing the angular acceleration φ̈ variable from
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Eq. (10). The general non-linear state-space representation is
summed up in the following:

d

dt
x =

f(x,u,v)︷ ︸︸ ︷
Ax+ Bu+ ξp → (E,Q) ∼ x, ξ (11)

y = Cx+Du+ ηm︸ ︷︷ ︸
g(x,u,v)

→ (E,Q) ∼ y, η (12)

where the details of the states in the non-linear state-space are
presented in the following, such that

ẋ1 = x2, ẋ2 = − F
M
x2 +

1

M
u, ẋ3 = x4

ẋ4 =
g

L
sin(x3) +

F

ML
cos(x3)x2 −

1

ML
cos(x3)u

y1 = x1, y2 = x3

with ξ and η denote the noise in the proses and measurement
with certain Gaussian mean E and covariance Q in turn.
Standard format of the non-linear model of the inverted
pendulum is illustrated by these Jacobian matrices, therefore:

ẋ :=


ẋ1

ẋ2

ẋ3

ẋ4

 =


ṡ

s̈

φ̇

φ̈

 , x :=


x1

x2

x3

x4

 =


s

ṡ

φ

φ̇

 ,
u(t) := µ(t), y(t) :=

[
y1

y2

]
=

[
s

φ

]
suppose that there is no force on the system meaning that µ(t)
equals to zero, the equilibrium points are represented by two
conditions which are φ = 0 (down position, stable) and φ = π
(up position, unstable). These values are computed based on
a Taylor Series expansion, such that:

G(φ) = G(φn) + φ
∂G
∂φ

∣∣∣∣
φn

−→ n = [0, π] (13)

with respect to up-position of equilibrium point φ = π, the
expansion of Taylor series in Eq.(13) so as to receive the
variables of cosφ, sinφ, and φ̇2 for the sake of the states
in Eq.(11) and (12), therefore:

Gφ=π '



(1) cosφ = cosπ + [(π − φ)(− sinπ)]

(2) sinφ = sinφ+ [(π − φ)(cosπ)]

(3) sinφ = π − (φ′ + π) = −φ′

(4) φ̇2 ≈ 0

note: (1) and (2) result in −1 and π−φ respectively. From (2),
analysis is simplified by defining a new coordinate, such that
φ′ = φ−π and this is nothing more than a measured clockwise
from the up-position, so that it is now (3). From the formula
above, φ′, φ̇′, φ̈′ will be written as φ, φ̇, φ̈, so that this does
not have any effects on the state equations. This linearization
in terms of π will affect the state of angular acceleration φ̈
only when another down-equilibrium with φ = 0 is described

below,

Gφ=0 '


(1) cosφ = cos 0− φ sin 0 ≈ 1

(2) sinφ = sin 0 + φ cos 0 ≈ φ

(3) φ̇2 ≈ 0

those two set equilibrium (0, π) lead to divergent state of
matrix A = JA(x0, u0) although the φ = 0 is applied instead.
The whole state with influence of this circumstance is shown
as follows:

ẋ1 = x2, ẋ2 = − F
M
x2 +

u

M

ẋ3 = x4, ẋ4 =
g

L
+

F

ML
x2 −

u

ML
(14)

y1 = x1, y2 = x3 (15)

in a trivial way, two matrices are classified as controllable if
and only if the rank (ρ) of the controllability matrix Cλ is
exactly the same as that of in the A matrix. Controllability
matrix is defined as the combinations of both A and B matrix
with A as n by n matrix, such that:

Cλ =
[
B AB · · · An−1B

]
, ρC = n

=


0 1

M
−F
M2

F 2

M3

1
M

−F
M2

F 2

M3
−F 3

M4

0 −1
ML

F
M2L

−F 2

M3L −
g

ML2

−1
ML

F
M2L

−F 2

M3L −
g

ML2
F 3

M4L + Fg
M2L2

 (16)

observability Oλ has the same pattern as controllability in
terms of the numbers of rank which has to be same as A
matrix. However, the arrangement of the observability matrix
is different from the previous one. Instead of in the one row,
observability matrix is arranged in the one column, such that:
(suppose A is n by n matrix)

Oλ =


C
CA

...
CAn−1

 , ρO = n (17)

C. State-Feedback with Canonical Form

Recalling the dynamics of the closed-loop system declared
in Eqs. (14) and (15), keep in mind that the system poles are
presented as |sI − A| = 0 being called as the characteristic
roots. Since it is required to approach the zero-stability com-
ing from divergent arbitrary initialization states, the stability
properties must be achieved in the internal system, such that:

u(t) = −Kx(t)

and the desired poles should be set. Furthermore, having
designed the state vector which is looped to the input again,
it is important to track the reference signal, such that:

u(t) = −Kx(t) + Ψδ(t) (18)
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from Eq. (18), it is substituted to Eq. (11) generating the new
state which will be then compared as the normal system,

ẋ = (A−BK)x+BΨδ (19)

the determinant of this equation should be matched as the
normal system in terms of the coefficient from those two
characteristic polynomials, such that |sI − A| = |sI − (A −
BK)| = 0. Due to the high dimension of computing the
determinant, it is absolutely not a trivial calculation so that
the canonical form is applied to fit the value of K. Recalling
the controllability matrix C and denoting the transformation
matrix Φ, it is defined as Φ = C Γ with,

Γ =


γn−1 γn−2 · · · γ1 1
γn−2 γn−3 · · · 1 0

...
...

. . .
...

...
γ1 1 · · · 0 0
1 0 · · · 0 0

 (20)

those γi are derived from the extract from the determinant of
normal system, such that:

|sI −A| = sn + γ1s
n−1 + · · ·+ γn−1s+ γn (21)

the canonical form of Φ is then used to generate the updated
design of Â = Φ−1AΦ and B̂ = Φ−1B, such that: The
following scheme is to define K̂ as [k̂1, k̂2, · · · , k̂n]. Keep
in mind that the properties of eigenvalues in K̂ does not
change under transformation of Φ. The Eq.(21) and (23) need
to compare in order to get the collection of k̂i, such that:

k̂n = γ1 − γ̄1, · · · , k̂n−1 = γ2 − γ̄2, k̂1 = γn − γ̄n

where the actual K is designed as K = K̂Φ−1. The equations
enlightening the relations among the state-space matrices of
continuous- and discrete-time by step response invariance are:

Ad = eAT , Bd =

∫ T

0

eA(T−τ)B dτ, Cd = C (24)

IV. SIMULATION RESULTS

To illustrate the scheme along with the proposed state-
feedback with canonical form, the followings variables are
designed, such as M = 1kg, L = 0.842m, F = 1kg.s−1,
and g = 9.8093m.s−2. Suppose that x1 = s, x2 = ṡ, x3 = φ,
and x4 = φ̇ so that the matrix of A and B will be,

A =


0 1 0 0
0 −1 0 0
0 0 0 1
0 1.1876 11.6500 0

 B =


0
1
0

−1.1876


in terms of the controllability, the pair (A,C) is controllable
because it has a full rank of ρC = n = 4 and it is also
observable with the same rank ρO = n, therefore

C =


0 1 −1 1
1 −1 1 −1
0 −1.1876 1.1876 −15.0238

−1.1876 1.1876 −15.0238 15.0238



O =



1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1
0 −1 0 0
0 1.1876 11.6500 0
0 1 0 0
0 −1.1876 0 11.6500


having computed the analytical problems, initial some con-
straints are delivered, such that:

|φ| < π

4
; |φ̇(t)| and |ṡ(t)| 6=� large ∀ t ≥ 0

and

xu =
[
7 0 π

2 0
]

xc =
[
5 −1 π

5 0.2
]
,

xs =
[
0.5 0 0.3 0

]
along with

P =
[
−2 −3 + 0.5i −3− 0.5i −4

]
,

Pd =
[
0.61 0.47 + 0.06i 0.47− 0.06i 0.37

]
where the initial conditions of xu, xc, xs refer to unstable
(large displacement and angular rotation), critical and stable
(equilibrium) in turn. Since the open-loop linearized system
is unstable because its poles are not strictly in the negative
real part of complex plane, the poles of the state-feedback
is proposed as P . Theoretically, the large negative poles lead
to the fast stability yet yielding a large gain of K, making
the design seems unrealistic or poor to the true systems.
Furthermore, those initial conditions are also implemented
in the linearized as shown in Fig.(2a), (2b), (2c) and non-
linear system showing that the large displacement and angular
rotations made the control unstable. With these angles, the
linearisation is no longer an acceptable approximation of the
real system, thus the control designed for the linear system is
not working properly as depicted in Fig.(2d), (2e), (2f). The
control law implementation with a discrete-time controller is
applied only for the stable xs initial condition as portrayed in
Fig.(2g), (2h), (2i). The opted time sampling is also crucial and
the stability is achieved with T = 0.1. At T ≥ 1s. The main
observation is that the behaviour of the nonlinear system with
sampling is also dependant on the chosen initial conditions.
An adjustment of the gain with respect to the sampling time
would be essential in order to stabilize the system for higher
sampling time values in discrete time as depicted in Fig.(2j).
In order to perform a fair comparison between the continuous-
time and discrete-time models, the chosen desired poles were
transformed from the s-plane to the z-plane with z = esT .
This transformation guarantees that the poles of the discretized
linearised system are inside the unity disk, thus the stability
of the system is preserved. This is because the poles on the
s-plane with negative real part are mapped inside the unity
disk on the z-plane. Moreover, due to the pole correspondence
between the s- and z-plane, the performance of the discrete-
time is expected to be similar to the continuous-time system
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Â =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−γn −γn−1 −γn−2 · · · −γ1

 , B̂ =


0
0
...
0
1



Â− B̂K̂ =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−
(
γ̄n − k̂1

)
−
(
γ̄n−1 − k̂2

)
−
(
γ̄n−2 − k̂3

)
· · · −

(
γ̄1 − k̂n

)

 (22)

∣∣∣sI − (Â− B̂K̂)∣∣∣ = sn +
(
γ̄1 + k̂n

)
sn−1 + · · ·+

(
γ̄n−1 + k̂2

)
s+

(
γ̄n + k̂1

)
(23)

V. CONCLUSION

Increasing the sampling time (hence recalculating the dis-
crete poles and matrices for each sampling time values) has
influence on the performance of the system. The peak value of
y1 is increasing and after some value of T an overshoot starts
to be present as T increases. With the redesigned controller
Kd, stability can be achieved for larger sampling time values
than in the case of K, but the value of T has to be chosen
such a way that sufficient amount of information of the system
can be obtained. The smaller the sampling time, the closer
performance can be achieved to the continuous time case. On
the contrary increasing the sampling time leads to degrading
dynamical performance, and at last, instability
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(f) Non-linear, xs, C & D
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(i) xs,C, T = 0.1
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(j) xs, C, Performance degradation due to T

0 0.5 1 1.5 2 2.5 3

y
1
(m

)

0

0.5

1

1.5

T =0.02s

T =0.04s

T =0.06s

T =0.08s

T =0.1s

T =0.12s

T =0.14s

T =0.16s

T =0.18s

T =0.2s

Time (s)
0 0.5 1 1.5 2 2.5 3

y
2
(r
ad

)

-1

-0.5

0

0.5

1

T =0.02s

T =0.04s

T =0.06s

T =0.08s

T =0.1s

T =0.12s

T =0.14s

T =0.16s

T =0.18s

T =0.2s

(k) xs, D, Performance degradation due to T

Fig. 2: Performance variations of C (Continuous) and D (Discrete) from linearized and non-linear system with the influences of three
different characteristics of initial conditions xu, xc, xs along with some gain of K,Kd and time-sampling T
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