

14

International Journal of

Science and Engineering Investigations vol. 11, issue 121, February 2022

ISSN: 2251-8843 Received on February 21, 2022

Design of 32-bit ISA RISC-V Processor with CNN Instruction

Integration

An Nguyen1, Kim Anh Phan Vo2, Hieu Nguyen3, Hung Nguyen4, Linh Tran5
1,2,3,4,5Department of Electronics, Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam

(11652039@hcmut.edu.vn, 2pvkanh@hcmut.edu.vn, 3hieunt@hcmut.edu.vn, 4ngthung@hcmut.edu.vn, 5linhtran@hcmut.edu.vn)

Abstract-This paper presents the hardware design of a 32-bit
ISA RISC-V based on Verilog HDL language, under 5-stage
pipeline model. We created two new instructions to support
CNN computation. The design is functional simulate with
Modelsim and synthesized with Intel Quartus. The proposed
design can operate with the test code, interact with the memory
and perform the CNN computation on the grayscale image.

Keywords- RISC-V, CNN, FPGA, New Instruction, CPU

I. INTRODUCTION

The reduced instruction set computer (RISC), which give a
cost-efficient processor solution as opposed to complex
instruction set computer (CISC), is important to embedded
computers and computers for general purposes [1]. The
prevalence of RISC in the industry is astounding, and it derives
from the simplicity of its instruction set, which allows for
simpler instruction decoding inside the hardware. As a result,
smaller hardware with equivalent performance to CISC is
produced.

The RISC V instruction set architecture (ISA) is designed
to be a versatile and user-friendly solution for RISC designs. It
enables a modest and reliable base of instruction set that could
be modify for particular purpose [2]. Furthermore, researches
on RISC-V can benefit from flexible hardware such as field-
programmable gate array (FPGA) because of their capacity to
quickly reconfigure. Recent researches focus on applying
RISC-V on convolutional neural network (CNN) application
such as machine learning, image processing. Lee et al. [3]
apply RISC-V CNN coprocessor for real-time epilepsy
detection. Li et al. [4] implement four new instructions for
RISC-V CNN operation. RV-CNN [5], [6] modify micro-
architecture of the RISC-V ISA to configure it for CNN.
Research [7] uses a popcount instruction to accelerate CNN.
Research [8] shows a CNN RISC-V coprocessor on FPGA Kit
DE2-115 as a soft-core processor. Research [9, 10] focus on
energy efficiency when design their RISC-V core on CNN
operation. Liu et al. [11] implement an CNN accelerator for
their RISC-V separately. Recent related works also choose to
modify or add new instructions into the RISC ISA [12, 13, 14].
In this paper, we will integrate two new CNN instructions in
the proposed RISC-V architecture for CNN processing. The
proposed contributions of this paper include:

• Hardware design of a 32-bit ISA RISC-V Processor with
5-stage pipeline configuration.

• Added new two instructions to support in CNN
computation.

• Perform CNN testing of the proposed design on input
grayscale images.

The rest of the paper is organized as follows: Section 2
presents the RISC-V instruction set and theoretical pipeline and
hazard, the CNN integration we intended to apply as the two
new instructions. Section 3 shows the proposed design of
RISC-V in parts with CNN instructions integrated. In section 4,
we present the synthesis result of our design and simulate on
the design a Sobel filter test. Finally, we conclude the paper in
section 5.

II. THEORY DESIGN OF RICS-V AND CNN INSTRUCTIONS

A. RISC-V

RISC-V is an open-source hardware ISA of central
processing unit (CPU) based on established simplified
instruction set computing (RISC) principles.

The fundamental 32-bit integer ISA is RISC-V 32-bit
(RV32I). The 32-registers on the RV32I are each 32 bits wide.
Register x0 is hardwired to have all bits set to 0. General
purpose registers x1–x31 store values that are interpreted by
different instructions as a collection of Boolean values, two’s
complement signed binary integers, or unsigned binary
integers. There is one more unprivileged register: the program
counter (pc), which contains the location of the currently
executed instruction.

There are 4 base components included in the CPU: PC,
Register Files, Arithmetic and Logical Unit (ALU) and Logic
Controller (Controller). PC takes responsibility for storing the
address of next executing instruction, Register Files store the
temporal variable for calculating, ALU computes data based on
the signal from controller.

Based on those components, the RISC-V processor is
divided into 5 basic phases in every instruction executing
cycle:

1. Instruction Fetch

International Journal of Science and Engineering Investigations, Volume 11, Issue 121, February 2022 15

www.IJSEI.com Paper ID: 1112122-03 ISSN: 2251-8843

2. Decode – Register Read

3. Execute

4. Memory Access

5. Register Write

From decoding the instruction, the processor will choose
the needed components through a logic controller. In some
special cases, one of these phases will be ignored.

Figure 1 present the ISA 32-bit RISC-V CPU single cycle
data-path, which includes these components:

Figure 1. ISA 32-bit RISC-V data-path without pipeline

• Program counter register (PC): store the address of
executed instructions

• Add-4 (+4): update the PC

• Instruction memory (IMEM): store all the instructions •
Register files (REG): contains temporal data

• Immediate generator (IMM): decode generate immediate
for each instruction

• Branch comparator (BRANCH): compare two operands
and export the results

• A multiplexer (MUXA): choose between Registers and
PC for the input of ALU

• B multiplexer (MUXB): choose between Registers and
Immediate for the input of ALU

• Arithmetic and logical unit (ALU): do arithmetic or
logical calculation

• Data memory (DMEM): the main memory that store data

• Write back mux (MUXWB): choose between Memory,
ALU and PC+4 to be the write back data of Registers.

• PC multiplexer (MUXPC): choose the next address of
instruction from PC or ALU

B. Pipeline and hazards

1) Pipeline implementation
Pipeline allows storing and executing instructions in an

orderly process. The CPU is split into stages, which are linked
together to form a pipe-like structure. The use of pipeline
improves total instruction throughput.

Base on the single cycle structure, the CPU is divided into
5 stages: Instruction Fetch (IF), Instruction Decode (ID),
Execution (EX), Memory Access (MA), Write Back (WB).
Each stage takes the responsibility similar to each phase in the
single cycle model. A fundamental RISC-V pipeline model is
presented in figure 2.

Figure 2. ISA 32-bit RISC-V data-path pipeline model

2) Hazards in Pipeline technique and sotuion
There are four types of hazards need to be solved while

design a pipelined RISC-V CPU:

• Structural hazard

• Data hazard

• Control hazard

• Timing hazard

For structural hazard, it is caused by two or more
instructions in the pipeline compete for access to a single
physical resource (registers, memory). Figure 3 shows an
example for structural hazard. The solutions for structural
hazard are:

Figure 3. Example for structural hazard in RISC-V

• For registers: Design a register file that has 2 independent
read ports and 1 independent write port.

• For memory: Add 2 separate caches for instruction and
data if there is only one memory or use 2 memories for IMEM
and DMEM. In this thesis, we use 2 separate memories.

International Journal of Science and Engineering Investigations, Volume 11, Issue 121, February 2022 16

www.IJSEI.com Paper ID: 1112122-03 ISSN: 2251-8843

For data hazard, it is caused by an instruction depends on
completion of data access by a previous instruction. For
example, register s0 used in next instructions has not been
updated at the current cycle. Figure 4 shows an example for
data hazard. The solutions for data hazard are:

Figure 4. Example for data hazard in RISC-V

• Stall the next instruction for 2 cycles until the Registers
can be updated. This solution leads to reduce performance.

• Forwarding (Bypassing): grab the operand from pipeline
stage, rather than Registers. In this project, we create a module
Forwarding to apply this solution.

• Rearrange code to avoid data hazard (hardware unrelated).

For control hazard, it is caused by fetching next instruction
mismatches with branch outcome that result in wrong flow of
control. For example, the program will go wrong if the branch
BEQ taken. Figure 5 shows an example for control hazard. The
solutions for control hazard are:

Figure 5. Example for control hazard in RISC-V

• If branch not taken, then instructions fetched sequentially
after branch are correct.

• If branch or jump taken, then need to flush incorrect
instructions from pipeline by converting to NOPs (2 cycles
after) and fetch the correct instructions.

For timing hazard, it is caused by the loading process takes
too much time for accessing the memory, so in the case of
forwarding, there is not enough time for data processing. For
example, AND instruction use the same register with LOAD
instruction and it need forwarding. However, the memory
exports at the late of the cycle, which causes error. Figure 6
shows an example for timing hazard. The solution for timing

hazard is stalling the processor for one cycle to wait for
memory loading.

Figure 6. Example for timing hazard in RISC-V

C. CNN Integration

In this section, we present two new CNN instructions:
Convolution and maxpooling. These are the two CNN
instructions integrated in our 32-bit ISA RISC-V design.

1) Convolution theory
Convolution is one of the main building blocks of a CNN.

The term convolution refers to the mathematical combination
of two functions to produce a third function. It merges two sets
of information.

In the case of a CNN, the convolution is performed on the
input data with the use of a filter or kernel (these terms are used
interchangeably) to then produce a feature map. We execute a
convolution by sliding the filter over the input. At every
location, a matrix multiplication is performed and sums the
result onto the feature map.

Figure 7 shows the example of convolution on image.

Figure 7. Example of convolution on image

We perform numerous convolutions on our input, where
each operation uses a different filter. This results in different
feature maps. In the end, we take all of these feature maps and
put them together as the final output of the convolution layer.

2) Convolution instruction theory

International Journal of Science and Engineering Investigations, Volume 11, Issue 121, February 2022 17

www.IJSEI.com Paper ID: 1112122-03 ISSN: 2251-8843

After creating the instruction to load feature map from the
memory and store the values of pixels from R1 to R9, we
attempt to create the new instruction to take the convolution
results between the feature map and the filter. According to the
filter value, again, we fit the functionality of store 9 pixels of
filters from R10 to R18 in RISC-V Register. Table 1 present
both of these operations.

TABLE I. DESIGN CONVENTION FROM R1 TO R18

R1 Pixel 1 of input image

R2 Pixel 2 of input image

R3 Pixel 3 of input image

…. ….

R9 Pixel 9 of input image

R10 Pixel 1 of filter

R11 Pixel 2 of filter

R12 Pixel 3 of filter

…. ….

R10 Pixel 9 of filter

By fixing the function of Register, now it has the output
port is “Convolution” and the output result Convolution [31:0]
is calculated by:

() () ()

()

() ()

()

() ()

()

() ()

()

3) Convolution instruction in design
Table 2 presents the convolution instruction structure. The

custom convolution instruction has 32 bit with:

TABLE II. CONVOLUTION INSTRUCTION IN MACHINE LANGUAGE

31 25 24 20 19 15 14 12 11 7 6 0

Imm[11:5] RS2 RS1 000 Imm[4:0] 0000101

• Bit 6 to 0: Opcode of the instruction (opcode =
7’b0000101)

• Bit 11 to 7: The offset Imm[4:0]

• Bit 14 to 12: Do not have any function, so I set it to
3’b000

• Bit 19 to 15: Do not have any function.

• Bit 24 to 20: The register holds the base address to be
stored in memory

• Bit 31 to 25: The offset Imm [11:5]

Our new convolution instruction will have the function:

Convolution Out => MEM[RS2+Imm[11 : 0]]

4) Maxpooling instruction
Maximum pooling, or max pooling, is a pooling operation

that calculates the maximum, or largest, value in each patch of
each feature map. Figure 8 shows an example of maxpooling.

Figure 8. Maxpooling example

The results are down sampled or pooled feature maps that
highlight the most present feature in the patch, not the average
presence of the feature in the case of average pooling. We can
make the max pooling operation concrete by again applying it
to the output feature map of the line detector convolutional
operation and manually calculate the first row of the pooled
feature map.

5) Maxpooling instruction in design
We introduce the second custom instruction: Maxpooling.

The instruction takes the largest value from R1 to R7, which is
feature map as an input, and store that value at the Address
RS2 + Imm[11:0] in the memory. Table 3 presents the
maxpooling instruction structure. The custom maxpooling
instruction has 32 bit:

• Bit 6 to 0: Opcode of the instruction (opcode =
7’b0001001)

• Bit 11 to 7: The offset Imm[4:0]

• Bit 14 to 12: Do not have any function, so I set it to
3’b000

TABLE III. CONVOLUTION INSTRUCTION IN MACHINE LANGUAGE

31 25 24 20 19 15 14 12 11 7 6 0

Imm[11:5] RS2 RS1 000 Imm[4:0] 0001001

• Bit 19 to 15: Do not have any function.

• Bit 24 to 20: The register holds the base address to be
stored in memory

• Bit 31 to 25: The offset Imm [11:5]

International Journal of Science and Engineering Investigations, Volume 11, Issue 121, February 2022 18

www.IJSEI.com Paper ID: 1112122-03 ISSN: 2251-8843

Our new maxpooling instruction will have the function:

Maxpooling => MEM[RS2+Imm[11 : 0]]

We present an example of the maxpooling instruction in
table 4. In this case, the maxpooling instruction get the largest
value from R1 to R9, which is 244, and the store the value in
Imm[31:7] address in the memory

TABLE IV. MAXPOOLING EXAMPLE BY REAL DATA

Registers Datat Registers hold

R1 134

R2 244

R3 156

R4 44

R5 0

R6 244

R7 79

 R8 25

R9 144

III. HARDWARE DESIGN OF PIPELINE RISC-V WITH CNN

INTERGRATION

The RISC-V pipelined processor consists of 5 stages:
Instruction Fetch (IF), Instruction Decode (ID), Execute (EX),
Memory Access (MA), Write Back (WB). The proposed
processor design is shown in figure 9.

• Program Counter (PC)

– Function: The PC is a module that increases the PC to
point to the next instruction.

– Behavior: Using to the signal provide from Controller,
the output will stall the PC, or choose PC = PC +4

Figure 9. The proposed processor design with all main components

• Instruction memory (IMEM)

– Function: This module is read-only-memory (rom) that
read the instruction stored inside this block.

– Behavior: At each positive edge memory clock (clkmem),
IMEM reads the content at the provided address. • Register
Files

– Function: Registers keep temporal variables for
calculation.

– Behavior: The registers take two clock sources which are
base clock and memory clock. At each positive edge of
memory clock, the module outputs the contents of which
Address A and Address B point to. Also at this edge, if the
Write Enable is set, the data will be written into the registers.

• Arithmetic and Logical Unit (ALU)

– Function: This unit responsible for the arithmetic and
logical computation for the processor.

TABLE V. CONVOLUTION INSTRUCTION IN MACHINE LANGUAGE

INST1 INST2 INST3 Rs_inst1 = rd_inst2 Rs_inst1 = rd_inst3 DATA Selection Signal Stall

R_inst NM_Inst NM_Inst x x inst1 00 0

R_inst NM_Inst MR_Inst x 0 inst1 00 0

R_inst NM_Inst MR_Inst x 1 inst3 01 0

R_inst MR_Inst NM_Inst 0 x inst1 00 0

R_inst MR_Inst NM_Inst 1 x inst2 10 0

R_inst MR_Inst MR_Inst 0 0 inst1 00 0

R_inst MR_Inst MR_Inst 0 1 inst3 01 0

R_inst MR_Inst MR_Inst 1 0 inst2 10 0

R_inst MR_Inst MR_Inst 1 1 inst2 10 0

R_inst L-Type NM_Inst 0 x inst1 00 0

R_inst L-Type NM_Inst 1 x inst2 10 1

R_inst L-Type MR_Inst 0 0 inst1 00 0

R_inst L-Type MR_Inst 0 1 inst3 01 0

R_inst L-Type MR_Inst 1 x inst2 10 1

N_inst x x x x inst0 00 0

International Journal of Science and Engineering Investigations, Volume 11, Issue 121, February 2022 19

www.IJSEI.com Paper ID: 1112122-03 ISSN: 2251-8843

– Behavior: ALU takes the ALU selection signals
(alusel) from the Controllers to decide the operational mode
between two input operands and export the result. There are
ten working mode of this unit which are Addition,
Subtraction, Bitwise-And, Bitwise Or, Bitwise-Xor, Logical
Shift Left, Logical Shift Right, Arithmetic Shift Right,
Signed Comparison and Unsigned Comparison.

• Branch Comparison (BRANCH)

– Function: BRANCH does the comparison and give the
result for processing branch instruction.

– Behavior: Because the BRANCH only serves branch
instructions so it only takes two data input from registers
(dataA and dataB) and one decoded signal from Controller
which indicates signed or unsigned comparison. The outputs
determine whether dataA is equal (breq = 1), less than (brlt =
1) or greater than (breq = 0 and brlt = 0).

• Immediate Generator (IMM)

– Function: IMM create immediate for each type of
instruction

– Behavior: the module is controlled by IMM mode
selection signals (immsel) from the Controller. The IMM
then reorders the input signals and adds sign-extend bits to
the immediate to create full 32 bits operand in the output
(immout).

• Logic Controller (CONTROLLER)

– Function: Logic Controller’s task is that identifies the
instruction and sends control signal to the components of
each stage.

– Behavior: the module takes instruction and starts to
decode. After that, bases on the result, the CONTROLLER
sends active signals to the needed components for this
instruction. Especially, when encounters branch instructions,
the controller sends control signals then waits for the result
and drive the control flow.

• Memory selection (MEMSEL)

– Function: The MEMSEL modules only supports for
Load instructions. This module will take the output data
from the DMEM, choose which bits need to be loaded and
sign-extend these bits.

– Behavior: The modules take bits 12 to 14 from the
instruction which indicates the type of load instruction, to be

the selection mode. If the instruction is LB or LBU, the last
byte will be taken and sign-extend. Else, in case of LH or
LHU, last two bytes will be chosen and sign-extend. Finally,
if the instruction is LW, the whole bits will be taken.

• Data memory (DMEM)

– Function: DMEM loads and stores the data for all the
programs.

– Behavior: DMEM contains two parts which are
memory controller and the main memory. The controller
uses instruction at MA stage, address, write data and
memory clock to be inputs. When the instruction is S-Type,
the controller will drive one, two or four bytes depended on
which type of store instruction, to one, two or four
consecutive addresses of memory. If the instruction is L-
Type, four consecutive addresses will be fetched out to load
the data.

We also use another module called forwarding control.
The module takes three instructions from EX, MA and WB
stage for checking all the cases that there are interferences in
register contents between two or more consecutive
instructions. It will determine which register needs to be
grabbed or when the load instruction stalls for ensure the
data are updated timely.

We compare the instruction in Execution stage (inst1)
versus two previous instructions which are in Memory
Access stage (inst2) and Write Back stage (inst3). Because
the data, when inference happens, needed to be driven from
the destination register of previous instructions to the source
registers of current instruction, so we will compare the
source register of inst1 (rs inst1) with destination register of
inst2 and inst3 (rd inst2 and rd inst3). Additionally, the
picked data must be the latest data so the comparison with
inst2 is set to higher priority.

We divide the instruction in EX stage into two types: one
source register used instruction (R Inst) and no source
registers used instruction (N-Inst). Besides, the instruction in
MA stage and WB stage is also classified into two types:
register modified instruction (MR Inst) and non-register
modified instruction (NR Inst). However, there is one
exception that due to the time delay in loading data from
memory, the processor must stall one cycle when grabbing
data from Load instruction to ensure the timing requirement.

The outputs of the module are Afsel, Bfsel and stall
signal. The forwarding control truth table is shown in table 5.

TABLE VI. SYTHESIS RESULT OF PROPOSED DESIGN AND COMPONENTS

Area

Speed[MHz]
ALM Registers BRAM DSP

Proposed design 3715 2091 78 18 43

Baranch & Forwarding Control 40 70 3 0 -

Memory & Control 5.2 2 75 0 -

ALU 237 0 0 0 -

Register & Controllers 226 992 0 0 -

CNN New Instructions 2348 631 0 18 -

International Journal of Science and Engineering Investigations, Volume 11, Issue 121, February 2022 20

www.IJSEI.com Paper ID: 1112122-03 ISSN: 2251-8843

IV. SYNTHESIS RESULT AND FUNCTIONAL SIMULATION

A. Synthesis on Quartus

We achieve the overall speed of 43 MHz for the
proposed design of RISC-V with CNN new instructions
when synthesized with Quartus. The proposed design and its
components synthesis result is shown in table 6.

We present some of RISC-V main entities to show the
portion of resources that CNN New Instructions accounts
for. The CNN New Instructions takes 63% of the ALM and
all the DSPs used in the proposed RISC-V design. Because
we do not utilize resource re-use, the logic mathematical
functions of Maxpooling and Convolution instructions uses
many ALM resources. In future research, it is important that
we integrate the computation heavy tasks in these
instructions to the ALU.

The overall speed of the design could also be improved
by optimize the path between the original RISC-V CPU and
the new CNN instructions core, which could bring the design
speed back to 140 MHz, similar to the original RISC-V
design.

B. Simulation on processing application

In this section, we used the proposed RISC-V with CNN
instructionsß design to simulate a CNN functions called
Sobel filter. The Sobel operator, sometimes called the Sobel–
Feldman operator or Sobel filter, is used in image processing
and computer vision, particularly within edge detection
algorithms where it creates an image emphasizing edges
[15].

Sobel and Feldman presented the idea of an ”Isotropic 3
× 3 Image Gradient Operator” at a talk at SAIL in 1968.
Technically, it is a discrete differentiation operator,
computing an approximation of the gradient of the image
intensity function. At each point in the image, the result of
the Sobel–Feldman operator is either the corresponding
gradient vector or the norm of this vector.

The Sobel–Feldman operator is based on convolving the
image with a small, separable, and integer-valued filter in the
horizontal and vertical directions and is therefore relatively
inexpensive in terms of computations. On the other hand, the
gradient approximation that it produces is relatively crude, in
particular for high-frequency variations in the image. Figure
10 presents the Sobel filer used in detecting the edge.

Figure 10. Sobel filter used in detecting the edge [16]

Figure 11. Input data 1, grayscale image 128x128 resolution

Figure 12. Output data1, detect horizontal and vertical edge

Figure 13. Input data 2, grayscale image 128x128 resolution

Figure 14. Input data 2, grayscale image 128x128 resolution

International Journal of Science and Engineering Investigations, Volume 11, Issue 121, February 2022 21

www.IJSEI.com Paper ID: 1112122-03 ISSN: 2251-8843

The simulation applies this Gx and Gy filter, using the
original and custom instruction to perform CNN
computation. Our target is checking if it is possible to detect
the edge of the image.

The processor processed the image and return the result
to the memory correctly. We show the first example image
and result in figure 11 and figure 12 and the second example
image and result in figure 13 and figure 14, respectively.
This proves the two CNN instructions worked successfully
according to our theory and design.

V. CONCLUSION

The 32-bit ISA RISC-V with CNN instruction integration
can perform CNN computation by applying Sobel kernel to
detect the vertical and horizontal edge. The design is
virtually simulated on the Modelsim software with all the
signals, the logical functions and memory behave correctly.

In future research, we will create cache memory module
and use external memories to speed up the processor. In
addition, to improve the performance of RISC-V, new
technologies could be integrated such as multiprocessor,
multi-scalar, etc. Furthermore, we need to implement extra
data bus interface to connect with the peripherals. The
proposed processor could be embedded to do tasks such as
machine learning.

ACKNOWLEDGMENT

This research is funded by Ho Chi Minh City University
of Technology (HCMUT), VNU-HCM under grant number
To-DDT-2020-09. We acknowledge the support of time and
facilities from Ho Chi Minh City University of Technology
(HCMUT), VNU-HCM for this study.

REFERENCES

[1] G. Kane, mips RISC Architecture. Prentice-Hall, Inc., 1988.

[2] A. Raveendran, V. B. Patil, D. Selvakumar, and V. Desalphine, “A
risc-v instruction set processor-micro-architecture design and
analysis,” in 2016 International Conference on VLSI Systems,
Architectures, Technology and Applications (VLSI-SATA), pp. 1–7,
IEEE, 2016.

[3] S.-Y. Lee, Y.-W. Hung, Y.-T. Chang, C.-C. Lin, and G.-S. Shieh,
“Risc-v cnn coprocessor for real-time epilepsy detection in wearable
application,” IEEE transactions on biomedical circuits and systems,
vol. 15, no. 4, pp. 679–691, 2021.

[4] Z. Li, W. Hu, and S. Chen, “Design and implementation of cnn
custom processor based on risc-v architecture,” in 2019 IEEE 21st
International Conference on High Performance Computing and
Communications; IEEE 17th International Conference on Smart City;

IEEE 5th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), pp. 1945–1950, IEEE, 2019.

[5] W. Lou, C. Wang, L. Gong, and X. Zhou, “Rv-cnn: flexible and
efficient instruction set for cnns based on risc-v processors,” in
International Symposium on Advanced Parallel Processing
Technologies, pp. 3–14, Springer, 2019.

[6] Q. Jiao, W. Hu, Y. Wen, Y. Dong, Z. Li, and Y. Gan, “Design of a
convolutional neural network instruction set based on risc-v and its
microarchitecture implementation,” in International Conference on Al
gorithms and Architectures for Parallel Processing, pp. 82–96,
Springer, 2020.

[7] O. Myllynen, “Latch-based risc-v core with popcount instruction for
cnn acceleration,” Energy, 2021.

[8] R. Porter, S. Morgan, and M. Biglari-Abhari, “Extending a soft-core
risc-v processor to accelerate cnn inference,” in 2019 International
Conference on Computational Science and Computational
Intelligence (CSCI), pp. 694–697, IEEE, 2019.

[9] Y.-W. Hung, Y.-T. Chang, S.-Y. Lee, C.-C. Lin, and G.-S. Shieh,
“An energy-efficient and programmable risc-v cnn coprocessor for
real-time epilepsy detection and identification on wearable devices,”
in 2021 IEEE International Conference on Consumer Electronics-
Taiwan (ICCE-TW), pp. 1–2, IEEE, 2021.

[10] A. Garofalo, M. Rusci, F. Conti, D. Rossi, and L. Benini, “Pulp- nn:
accelerating quantized neural networks on parallel ultra-low-power
risc-v processors,” Philosophical Transactions of the Royal Society A,
vol. 378, no. 2164, p. 20190155, 2020.

[11] Z. Liu, J. Jiang, G. Lei, K. Chen, B. Qin, and X. Zhao, “A
heterogeneous processor design for cnn-based ai applications on iot
devices,” Procedia Computer Science, vol. 174, pp. 2–8, 2020.

[12] S. Wang, J. Zhu, Q. Wang, C. He, and T. T. Ye, “Customized
instruction on risc-v for winograd-based convolution acceleration,” in
2021 IEEE 32nd International Conference on Application-specific
Systems, Architectures and Processors (ASAP), pp. 65–68, IEEE,
2021.

[13] X. Qin, X. Liu, and J. Han, “A cnn hardware accelerator designed for
yolo algorithm based on risc-v soc,” in 2021 IEEE 14th International
Conference on ASIC (ASICON), pp. 1–4, IEEE, 2021.

[14] E. Flamand, D. Rossi, F. Conti, I. Loi, A. Pullini, F. Rotenberg, and
L. Benini, “Gap-8: A risc-v soc for ai at the edge of the iot,” in 2018
IEEE 29th International Conference on Application-specific Systems,
Architectures and Processors (ASAP), pp. 1–4, IEEE, 2018. [15] I.
Sobel, R. Duda, P. Hart, and J. Wiley, “Sobel-feldman operator,”

[15] I. Sobel, R. Duda, P. Hart, and J. Wiley, “Sobel-feldman operator,”

[16] “Sobel edge detector.”
https://homepages.inf.ed.ac.uk/rbf/HIPR2/sobel.htm.

How to Cite this Article:

Nguyen, A., Vo, K. A. P., Nguyen, H., Nguyen, H. &

Tran, L. (2022). Design of 32-bit ISA RISC-V

Processor with CNN Instruction Integration.

International Journal of Science and Engineering

Investigations (IJSEI), 11(121), 14-21.

http://www.ijsei.com/papers/ijsei-1112122-03.pdf

	I. Introduction
	II. Theory design of rics-v and CNN instructions
	A. RISC-V
	B. Pipeline and hazards
	1) Pipeline implementation
	2) Hazards in Pipeline technique and sotuion

	C. CNN Integration
	1) Convolution theory
	2) Convolution instruction theory
	3) Convolution instruction in design
	4) Maxpooling instruction
	5) Maxpooling instruction in design

	III. Hardware design of pipeline RISC-V with CNN intergration
	IV. Synthesis result and functional simulation
	A. Synthesis on Quartus
	B. Simulation on processing application

	V. Conclusion
	Acknowledgment
	References

