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Abstract-This paper presents the hardware design of a 32-bit 
ISA RISC-V based on Verilog HDL language, under 5-stage 
pipeline model. We created two new instructions to support 
CNN computation. The design is functional simulate with 
Modelsim and synthesized with Intel Quartus. The proposed 
design can operate with the test code, interact with the memory 
and perform the CNN computation on the grayscale image. 
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I. INTRODUCTION 

The reduced instruction set computer (RISC), which give a 
cost-efficient processor solution as opposed to complex 
instruction set computer (CISC), is important to embedded 
computers and computers for general purposes [1]. The 
prevalence of RISC in the industry is astounding, and it derives 
from the simplicity of its instruction set, which allows for 
simpler instruction decoding inside the hardware. As a result, 
smaller hardware with equivalent performance to CISC is 
produced.  

The RISC V instruction set architecture (ISA) is designed 
to be a versatile and user-friendly solution for RISC designs. It 
enables a modest and reliable base of instruction set that could 
be modify for particular purpose [2]. Furthermore, researches 
on RISC-V can benefit from flexible hardware such as field-
programmable gate array (FPGA) because of their capacity to 
quickly reconfigure. Recent researches focus on applying 
RISC-V on convolutional neural network (CNN) application 
such as machine learning, image processing. Lee et al. [3] 
apply RISC-V CNN coprocessor for real-time epilepsy 
detection. Li et al. [4] implement four new instructions for 
RISC-V CNN operation. RV-CNN [5], [6] modify micro-
architecture of the RISC-V ISA to configure it for CNN. 
Research [7] uses a popcount instruction to accelerate CNN. 
Research [8] shows a CNN RISC-V coprocessor on FPGA Kit 
DE2-115 as a soft-core processor. Research [9, 10] focus on 
energy efficiency when design their RISC-V core on CNN 
operation. Liu et al. [11] implement an CNN accelerator for 
their RISC-V separately. Recent related works also choose to 
modify or add new instructions into the RISC ISA [12, 13, 14]. 
In this paper, we will integrate two new CNN instructions in 
the proposed RISC-V architecture for CNN processing. The 
proposed contributions of this paper include:  

• Hardware design of a 32-bit ISA RISC-V Processor with 
5-stage pipeline configuration.  

• Added new two instructions to support in CNN 
computation.  

• Perform CNN testing of the proposed design on input 
grayscale images.  

The rest of the paper is organized as follows: Section 2 
presents the RISC-V instruction set and theoretical pipeline and 
hazard, the CNN integration we intended to apply as the two 
new instructions. Section 3 shows the proposed design of 
RISC-V in parts with CNN instructions integrated. In section 4, 
we present the synthesis result of our design and simulate on 
the design a Sobel filter test. Finally, we conclude the paper in 
section 5. 

 

II. THEORY DESIGN OF RICS-V AND CNN INSTRUCTIONS 

A. RISC-V 

RISC-V is an open-source hardware ISA of central 
processing unit (CPU) based on established simplified 
instruction set computing (RISC) principles. 

The fundamental 32-bit integer ISA is RISC-V 32-bit 
(RV32I). The 32-registers on the RV32I are each 32 bits wide. 
Register x0 is hardwired to have all bits set to 0. General 
purpose registers x1–x31 store values that are interpreted by 
different instructions as a collection of Boolean values, two’s 
complement signed binary integers, or unsigned binary 
integers. There is one more unprivileged register: the program 
counter (pc), which contains the location of the currently 
executed instruction.  

There are 4 base components included in the CPU: PC, 
Register Files, Arithmetic and Logical Unit (ALU) and Logic 
Controller (Controller). PC takes responsibility for storing the 
address of next executing instruction, Register Files store the 
temporal variable for calculating, ALU computes data based on 
the signal from controller.  

Based on those components, the RISC-V processor is 
divided into 5 basic phases in every instruction executing 
cycle:  

1. Instruction Fetch  
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2. Decode – Register Read  

3. Execute  

4. Memory Access  

5. Register Write  

From decoding the instruction, the processor will choose 
the needed components through a logic controller. In some 
special cases, one of these phases will be ignored. 

Figure 1 present the ISA 32-bit RISC-V CPU single cycle 
data-path, which includes these components: 

 

 

Figure 1.  ISA 32-bit RISC-V data-path without pipeline 

 

• Program counter register (PC): store the address of 
executed instructions  

• Add-4 (+4): update the PC  

• Instruction memory (IMEM): store all the instructions • 
Register files (REG): contains temporal data  

• Immediate generator (IMM): decode generate immediate 
for each instruction  

• Branch comparator (BRANCH): compare two operands 
and export the results  

• A multiplexer (MUXA): choose between Registers and 
PC for the input of ALU  

• B multiplexer (MUXB): choose between Registers and 
Immediate for the input of ALU  

• Arithmetic and logical unit (ALU): do arithmetic or 
logical calculation  

• Data memory (DMEM): the main memory that store data  

• Write back mux (MUXWB): choose between Memory, 
ALU and PC+4 to be the write back data of Registers.  

• PC multiplexer (MUXPC): choose the next address of 
instruction from PC or ALU 

B. Pipeline and hazards 

1) Pipeline implementation 
Pipeline allows storing and executing instructions in an 

orderly process. The CPU is split into stages, which are linked 
together to form a pipe-like structure. The use of pipeline 
improves total instruction throughput.  

Base on the single cycle structure, the CPU is divided into 
5 stages: Instruction Fetch (IF), Instruction Decode (ID), 
Execution (EX), Memory Access (MA), Write Back (WB). 
Each stage takes the responsibility similar to each phase in the 
single cycle model. A fundamental RISC-V pipeline model is 
presented in figure 2. 

 

 

Figure 2.  ISA 32-bit RISC-V data-path pipeline model 

 

2) Hazards in Pipeline technique and sotuion  
There are four types of hazards need to be solved while 

design a pipelined RISC-V CPU:  

• Structural hazard  

• Data hazard  

• Control hazard  

• Timing hazard 

For structural hazard, it is caused by two or more 
instructions in the pipeline compete for access to a single 
physical resource (registers, memory). Figure 3 shows an 
example for structural hazard. The solutions for structural 
hazard are:  

 

 

Figure 3.  Example for structural hazard in RISC-V 

 

• For registers: Design a register file that has 2 independent 
read ports and 1 independent write port.  

• For memory: Add 2 separate caches for instruction and 
data if there is only one memory or use 2 memories for IMEM 
and DMEM. In this thesis, we use 2 separate memories. 
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For data hazard, it is caused by an instruction depends on 
completion of data access by a previous instruction. For 
example, register s0 used in next instructions has not been 
updated at the current cycle. Figure 4 shows an example for 
data hazard. The solutions for data hazard are:  

 

 

Figure 4.  Example for data hazard in RISC-V 

 

• Stall the next instruction for 2 cycles until the Registers 
can be updated. This solution leads to reduce performance.  

• Forwarding (Bypassing): grab the operand from pipeline 
stage, rather than Registers. In this project, we create a module 
Forwarding to apply this solution.  

• Rearrange code to avoid data hazard (hardware unrelated).  

For control hazard, it is caused by fetching next instruction 
mismatches with branch outcome that result in wrong flow of 
control. For example, the program will go wrong if the branch 
BEQ taken. Figure 5 shows an example for control hazard. The 
solutions for control hazard are:  

 

 

Figure 5.  Example for control hazard in RISC-V 

 

• If branch not taken, then instructions fetched sequentially 
after branch are correct.  

• If branch or jump taken, then need to flush incorrect 
instructions from pipeline by converting to NOPs (2 cycles 
after) and fetch the correct instructions.  

For timing hazard, it is caused by the loading process takes 
too much time for accessing the memory, so in the case of 
forwarding, there is not enough time for data processing. For 
example, AND instruction use the same register with LOAD 
instruction and it need forwarding. However, the memory 
exports at the late of the cycle, which causes error. Figure 6 
shows an example for timing hazard. The solution for timing 

hazard is stalling the processor for one cycle to wait for 
memory loading. 

 

 

Figure 6.  Example for timing hazard in RISC-V 

 

C. CNN Integration 

In this section, we present two new CNN instructions: 
Convolution and maxpooling. These are the two CNN 
instructions integrated in our 32-bit ISA RISC-V design. 

1) Convolution theory 
Convolution is one of the main building blocks of a CNN. 

The term convolution refers to the mathematical combination 
of two functions to produce a third function. It merges two sets 
of information.  

In the case of a CNN, the convolution is performed on the 
input data with the use of a filter or kernel (these terms are used 
interchangeably) to then produce a feature map. We execute a 
convolution by sliding the filter over the input. At every 
location, a matrix multiplication is performed and sums the 
result onto the feature map. 

Figure 7 shows the example of convolution on image. 

 

 

Figure 7.  Example of convolution on image 

 

We perform numerous convolutions on our input, where 
each operation uses a different filter. This results in different 
feature maps. In the end, we take all of these feature maps and 
put them together as the final output of the convolution layer. 

2) Convolution instruction theory 
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After creating the instruction to load feature map from the 
memory and store the values of pixels from R1 to R9, we 
attempt to create the new instruction to take the convolution 
results between the feature map and the filter. According to the 
filter value, again, we fit the functionality of store 9 pixels of 
filters from R10 to R18 in RISC-V Register. Table 1 present 
both of these operations.  

 

TABLE I.  DESIGN CONVENTION FROM R1 TO R18 

R1 Pixel 1 of input image 

R2 Pixel 2 of input image 

R3 Pixel 3 of input image 

…. …. 

R9 Pixel  9 of input image 

R10 Pixel 1 of filter 

R11 Pixel 2 of filter 

R12 Pixel 3 of filter 

…. …. 

R10 Pixel 9 of filter 

 

By fixing the function of Register, now it has the output 
port is “Convolution” and the output result Convolution [31:0] 
is calculated by: 

(        ) (        ) (        )

(                                   )
   

(        ) (        )

(                                   )
   

(        ) (        )

(                                   )
   

(        ) (        )

(                                   )
  

3) Convolution instruction in design 
Table 2 presents the convolution instruction structure. The 

custom convolution instruction has 32 bit with:  

 

TABLE II.  CONVOLUTION INSTRUCTION IN MACHINE LANGUAGE 

31  25 24  20 19  15 14  12 11 7 6  0 

Imm[11:5] RS2 RS1 000 Imm[4:0] 0000101 

 

• Bit 6 to 0: Opcode of the instruction (opcode = 
7’b0000101)  

• Bit 11 to 7: The offset Imm[4:0]  

• Bit 14 to 12: Do not have any function, so I set it to 
3’b000  

• Bit 19 to 15: Do not have any function.  

• Bit 24 to 20: The register holds the base address to be 
stored in memory  

• Bit 31 to 25: The offset Imm [11:5]  

Our new convolution instruction will have the function: 

Convolution Out => MEM[RS2+Imm[11 : 0]] 

4) Maxpooling instruction  
Maximum pooling, or max pooling, is a pooling operation 

that calculates the maximum, or largest, value in each patch of 
each feature map. Figure 8 shows an example of maxpooling. 

 

 

Figure 8.  Maxpooling example 

 

The results are down sampled or pooled feature maps that 
highlight the most present feature in the patch, not the average 
presence of the feature in the case of average pooling. We can 
make the max pooling operation concrete by again applying it 
to the output feature map of the line detector convolutional 
operation and manually calculate the first row of the pooled 
feature map. 

5) Maxpooling instruction in design 
We introduce the second custom instruction: Maxpooling. 

The instruction takes the largest value from R1 to R7, which is 
feature map as an input, and store that value at the Address 
RS2 + Imm[11:0] in the memory. Table 3 presents the 
maxpooling instruction structure. The custom maxpooling 
instruction has 32 bit:  

• Bit 6 to 0: Opcode of the instruction (opcode = 
7’b0001001)  

• Bit 11 to 7: The offset Imm[4:0]  

• Bit 14 to 12: Do not have any function, so I set it to 
3’b000 

 

TABLE III.  CONVOLUTION INSTRUCTION IN MACHINE LANGUAGE 

31  25 24  20 19  15 14  12 11 7 6  0 

Imm[11:5] RS2 RS1 000 Imm[4:0] 0001001 

 

• Bit 19 to 15: Do not have any function.  

• Bit 24 to 20: The register holds the base address to be 
stored in memory  

• Bit 31 to 25: The offset Imm [11:5]  
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Our new maxpooling instruction will have the function: 

Maxpooling => MEM[RS2+Imm[11 : 0]] 

We present an example of the maxpooling instruction in 
table 4. In this case, the maxpooling instruction get the largest 
value from R1 to R9, which is 244, and the store the value in 
Imm[31:7] address in the memory 

 

TABLE IV.  MAXPOOLING  EXAMPLE BY REAL DATA 

Registers Datat Registers hold 

R1 134 

R2 244 

R3 156 

R4 44 

R5 0 

R6 244 

R7 79 

 R8 25 

R9 144 

 
III. HARDWARE DESIGN OF PIPELINE RISC-V WITH CNN 

INTERGRATION 

The RISC-V pipelined processor consists of 5 stages: 
Instruction Fetch (IF), Instruction Decode (ID), Execute (EX), 
Memory Access (MA), Write Back (WB). The proposed 
processor design is shown in figure 9. 

• Program Counter (PC)  

– Function: The PC is a module that increases the PC to 
point to the next instruction.  

– Behavior: Using to the signal provide from Controller, 
the output will stall the PC, or choose PC = PC +4 

 

Figure 9.  The proposed processor design with all main components 

  

• Instruction memory (IMEM)  

– Function: This module is read-only-memory (rom) that 
read the instruction stored inside this block.  

– Behavior: At each positive edge memory clock (clkmem), 
IMEM reads the content at the provided address. • Register 
Files  

– Function: Registers keep temporal variables for 
calculation.  

– Behavior: The registers take two clock sources which are 
base clock and memory clock. At each positive edge of 
memory clock, the module outputs the contents of which 
Address A and Address B point to. Also at this edge, if the 
Write Enable is set, the data will be written into the registers.  

• Arithmetic and Logical Unit (ALU) 

– Function: This unit responsible for the arithmetic and 
logical computation for the processor.  

 

TABLE V.  CONVOLUTION INSTRUCTION IN MACHINE LANGUAGE 

INST1 INST2 INST3 Rs_inst1 = rd_inst2 Rs_inst1 = rd_inst3 DATA Selection Signal Stall 

R_inst NM_Inst NM_Inst x x inst1 00 0 

R_inst NM_Inst MR_Inst x 0 inst1 00 0 

R_inst NM_Inst MR_Inst x 1 inst3 01 0 

R_inst MR_Inst NM_Inst 0 x inst1 00 0 

R_inst MR_Inst NM_Inst 1 x inst2 10 0 

R_inst MR_Inst MR_Inst 0 0 inst1 00 0 

R_inst MR_Inst MR_Inst 0 1 inst3 01 0 

R_inst MR_Inst MR_Inst 1 0 inst2 10 0 

R_inst MR_Inst MR_Inst 1 1 inst2 10 0 

R_inst L-Type NM_Inst 0 x inst1 00 0 

R_inst L-Type NM_Inst 1 x inst2 10 1 

R_inst L-Type MR_Inst 0 0 inst1 00 0 

R_inst L-Type MR_Inst 0 1 inst3  01 0 

R_inst L-Type MR_Inst 1 x inst2 10 1 

N_inst x x x x inst0 00 0 
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– Behavior: ALU takes the ALU selection signals 
(alusel) from the Controllers to decide the operational mode 
between two input operands and export the result. There are 
ten working mode of this unit which are Addition, 
Subtraction, Bitwise-And, Bitwise Or, Bitwise-Xor, Logical 
Shift Left, Logical Shift Right, Arithmetic Shift Right, 
Signed Comparison and Unsigned Comparison.  

• Branch Comparison (BRANCH)  

– Function: BRANCH does the comparison and give the 
result for processing branch instruction.  

– Behavior: Because the BRANCH only serves branch 
instructions so it only takes two data input from registers 
(dataA and dataB) and one decoded signal from Controller 
which indicates signed or unsigned comparison. The outputs 
determine whether dataA is equal (breq = 1), less than (brlt = 
1) or greater than (breq = 0 and brlt = 0).  

• Immediate Generator (IMM)  

– Function: IMM create immediate for each type of 
instruction  

– Behavior: the module is controlled by IMM mode 
selection signals (immsel) from the Controller. The IMM 
then reorders the input signals and adds sign-extend bits to 
the immediate to create full 32 bits operand in the output 
(immout).  

• Logic Controller (CONTROLLER)  

– Function: Logic Controller’s task is that identifies the 
instruction and sends control signal to the components of 
each stage.  

– Behavior: the module takes instruction and starts to 
decode. After that, bases on the result, the CONTROLLER 
sends active signals to the needed components for this 
instruction. Especially, when encounters branch instructions, 
the controller sends control signals then waits for the result 
and drive the control flow.  

• Memory selection (MEMSEL)  

– Function: The MEMSEL modules only supports for 
Load instructions. This module will take the output data 
from the DMEM, choose which bits need to be loaded and 
sign-extend these bits. 

– Behavior: The modules take bits 12 to 14 from the 
instruction which indicates the type of load instruction, to be 

the selection mode. If the instruction is LB or LBU, the last 
byte will be taken and sign-extend. Else, in case of LH or 
LHU, last two bytes will be chosen and sign-extend. Finally, 
if the instruction is LW, the whole bits will be taken.  

• Data memory (DMEM)  

– Function: DMEM loads and stores the data for all the 
programs.  

– Behavior: DMEM contains two parts which are 
memory controller and the main memory. The controller 
uses instruction at MA stage, address, write data and 
memory clock to be inputs. When the instruction is S-Type, 
the controller will drive one, two or four bytes depended on 
which type of store instruction, to one, two or four 
consecutive addresses of memory. If the instruction is L-
Type, four consecutive addresses will be fetched out to load 
the data.  

We also use another module called forwarding control. 
The module takes three instructions from EX, MA and WB 
stage for checking all the cases that there are interferences in 
register contents between two or more consecutive 
instructions. It will determine which register needs to be 
grabbed or when the load instruction stalls for ensure the 
data are updated timely.  

We compare the instruction in Execution stage (inst1) 
versus two previous instructions which are in Memory 
Access stage (inst2) and Write Back stage (inst3). Because 
the data, when inference happens, needed to be driven from 
the destination register of previous instructions to the source 
registers of current instruction, so we will compare the 
source register of inst1 (rs inst1) with destination register of 
inst2 and inst3 (rd inst2 and rd inst3). Additionally, the 
picked data must be the latest data so the comparison with 
inst2 is set to higher priority. 

We divide the instruction in EX stage into two types: one 
source register used instruction (R Inst) and no source 
registers used instruction (N-Inst). Besides, the instruction in 
MA stage and WB stage is also classified into two types: 
register modified instruction (MR Inst) and non-register 
modified instruction (NR Inst). However, there is one 
exception that due to the time delay in loading data from 
memory, the processor must stall one cycle when grabbing 
data from Load instruction to ensure the timing requirement.  

The outputs of the module are Afsel, Bfsel and stall 
signal. The forwarding control truth table is shown in table 5.

 

TABLE VI.  SYTHESIS RESULT OF PROPOSED DESIGN AND COMPONENTS 

 
Area 

Speed[MHz] 
ALM Registers BRAM DSP 

Proposed design 3715 2091 78 18 43 

Baranch & Forwarding Control 40 70 3 0 - 

Memory & Control 5.2 2 75 0 - 

ALU 237 0 0 0 - 

Register & Controllers 226 992 0 0 - 

CNN New Instructions 2348 631 0 18 - 
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IV. SYNTHESIS RESULT AND FUNCTIONAL SIMULATION 

A. Synthesis on Quartus 

We achieve the overall speed of 43 MHz for the 
proposed design of RISC-V with CNN new instructions 
when synthesized with Quartus. The proposed design and its 
components synthesis result is shown in table 6.  

We present some of RISC-V main entities to show the 
portion of resources that CNN New Instructions accounts 
for. The CNN New Instructions takes 63% of the ALM and 
all the DSPs used in the proposed RISC-V design. Because 
we do not utilize resource re-use, the logic mathematical 
functions of Maxpooling and Convolution instructions uses 
many ALM resources. In future research, it is important that 
we integrate the computation heavy tasks in these 
instructions to the ALU.  

The overall speed of the design could also be improved 
by optimize the path between the original RISC-V CPU and 
the new CNN instructions core, which could bring the design 
speed back to 140 MHz, similar to the original RISC-V 
design. 

B. Simulation on processing application  

In this section, we used the proposed RISC-V with CNN 
instructionsß design to simulate a CNN functions called 
Sobel filter. The Sobel operator, sometimes called the Sobel–
Feldman operator or Sobel filter, is used in image processing 
and computer vision, particularly within edge detection 
algorithms where it creates an image emphasizing edges 
[15].  

Sobel and Feldman presented the idea of an ”Isotropic 3 
× 3 Image Gradient Operator” at a talk at SAIL in 1968. 
Technically, it is a discrete differentiation operator, 
computing an approximation of the gradient of the image 
intensity function. At each point in the image, the result of 
the Sobel–Feldman operator is either the corresponding 
gradient vector or the norm of this vector.  

The Sobel–Feldman operator is based on convolving the 
image with a small, separable, and integer-valued filter in the 
horizontal and vertical directions and is therefore relatively 
inexpensive in terms of computations. On the other hand, the 
gradient approximation that it produces is relatively crude, in 
particular for high-frequency variations in the image. Figure 
10 presents the Sobel filer used in detecting the edge. 

 

 

Figure 10.  Sobel filter used in detecting the edge [16] 

 

Figure 11.  Input data  1, grayscale image 128x128 resolution 

 

 

Figure 12.  Output data1, detect horizontal and vertical edge 

 

 

Figure 13.  Input data 2, grayscale image 128x128 resolution 

 

 

Figure 14.  Input data 2, grayscale image 128x128 resolution 
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The simulation applies this Gx and Gy filter, using the 
original and custom instruction to perform CNN 
computation. Our target is checking if it is possible to detect 
the edge of the image. 

The processor processed the image and return the result 
to the memory correctly. We show the first example image 
and result in figure 11 and figure 12 and the second example 
image and result in figure 13 and figure 14, respectively. 
This proves the two CNN instructions worked successfully 
according to our theory and design. 

 

V. CONCLUSION 

The 32-bit ISA RISC-V with CNN instruction integration 
can perform CNN computation by applying Sobel kernel to 
detect the vertical and horizontal edge. The design is 
virtually simulated on the Modelsim software with all the 
signals, the logical functions and memory behave correctly.  

In future research, we will create cache memory module 
and use external memories to speed up the processor. In 
addition, to improve the performance of RISC-V, new 
technologies could be integrated such as multiprocessor, 
multi-scalar, etc. Furthermore, we need to implement extra 
data bus interface to connect with the peripherals. The 
proposed processor could be embedded to do tasks such as 
machine learning. 
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