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Abstract- Financial markets are often volatile and offer high 
incentives to predict different option prices. Many algorithms 
have been proposed such as Black-Scholes model, Monte Carlo 
Simulation, Binomial Model, to price options. However, there 
are many drawbacks to each of these methods. In this research, 
we investigate separate methods and create a new algorithm for 
calculating American option pricing. To accomplish this, a 
variety of historical stock data was collected. Then, a subset of 
this data was taken, with dates ranging from 2020 to 2021, and 
was denoised using a 4-band wavelet transform. The data was 
then applied to several machine learning methods, which are 
Support Vector Regression (SVR) and Neural Networks; then 
we fitted these methods into a Least Squares Monte Carlo 
Simulation. The results of these tests are further compared and 
discussed in detail with other traditional methods. 

Keywords-Black-Scholes, 4-Band Wavelet Transform, Least 
Squares Monte Carlo Simulation, Neural Network, Support 
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I. INTRODUCTION 

Options are defined as contracts in which the buyer/owner 
of the contract can buy or sell a security at or before a specified 
expiry date. There are two types of options: Calls and Puts. Put 
options are contracts that enable the buyer to sell a security 
whilst a Call option enables the buyer to buy a security. The 
price a stock is worth is called the strike price, while the date it 
expires on is called the expiration date. The fee paid to 
purchase an option is called the premium. If the stock is below 
this strike price on the expiration date, the buyer loses the 
premium paid. However, if the stock is higher than the strike 
price, the profit is the difference in prices, minus the premium. 
Option pricing theory estimates the value of an option contract 
by taking the premium and calculating the probability that the 
contract will finish in the money. 

Though the goal of finding an option pricing formula was 
first undertaken at the beginning of the 20th century [15], The 

Black Scholes Model was the first true gold standard for 
Option Pricing Theory and the first model to theoretically price 
option contracts, though with many restrictions [1]. The model 
was developed in 1973 by Fischer Black, Robert Merton, and 
Myron Scholes and is still widely used to calculate the 
theoretical value of an option using five input variables. These 
variables are the strike price of an option, the current stock 
price, the time to expiration, the risk-free rate, and the volatility 
[1]. However, the Black Scholes Model only accounts for 
options that cannot be exercised before the date. This is the 
main feature that separates American and European options. 
While American Options can be exercised before the agreed 
upon expiration date, European Options may not. This means 
that when handling American Options, the Black Scholes 
Models is not the most effective way to calculate option prices, 
as it completely ignores the possibility of early exercising. 

After the proposal of the Black-Scholes Model, there have 
been many other researchers that have developed more reliable 
methods using different techniques. One of the most used 
models used by trades is the Binomial or Trinomial models. 
The binomial model, first developed in 1979, is a simple way 
to calculate option prices. At certain time periods, an asset 
price can move with two outcomes. The asset price can either 
go up a certain amount or go down a certain amount. For each 
time, there is a calculated percentage that the stock price will 
go either up or down. With this simplicity, a binomial tree may 
be easily modeled. A binomial tree is also more effective at 
calculating American Options as traders may use the 
predictions of the binomial tree to decide whether exercising 
early will, based on probability, give greater returns. However, 
the asset prices in the real market will almost never follow the 
exact values of the predicted Binomial tree. One method 
utilized to improve the accuracy of the Binomial tree is the 
Trinomial tree. The Trinomial Tree retains the option for the 
stock price to move up or down but adds a third option: that the 
asset price has no net change from one time to another [14].  

Another important and one of the most popular methods to 
value options is the Monte Carlo Simulation. It was first 
developed in 1977 by Phelim Boyle to price European Options 
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[25]. Over time, however, many different types of Monte Carlo 
Simulations have been made each with their own unique 
feature. The Simulation is based off several random sample 
paths, and it uses that randomness in these paths to determine a 
numerical value. It presents many advantages such as being 
shown to be very accurate and that it can have a large range of 
inputs. It also presents some disadvantages, mainly being that 
the Simulation seems to not factor in extreme financial 
situations. Variations of the Monte Carlo Simulation, on the 
other hand, have been used to calculate additional types of 
alternatives as time has passed. 

One of the most popular variations is the Least Squares 
Monte Carlo. Developed in 1996 by Jacques Carriere for 
options that can be exercised before the expiration date 
(Bermudan, American) [19]. It accomplishes this feat by a 2-
step process.  First, recursively, we go backward through the 
timestamps and assign values at each time stamp. These values 
will be our early exercise options. Secondly, we go through 
these values and decide whether to exercise the option at any of 
the given timestamps. This has become one of the most 
effective ways to price American options because of its 
accuracy coupled with its far lesser restrictions compared to the 
Black-Scholes model. However, there are some disadvantages 
to this method, those being that if poor constraints are set 
within the model the output will not be accurate, and if many 
input variables are used the method can become very 
inefficient and may crash.  

To address the shortcomings mentioned above, this study 
utilizes Wavelet denoised pre-processing procedure combined 
with two different machine learning methods: Support Vector 
Regression (SVR) and Neural Networks, to value the premium 
of the option contracts The results of the machine learning 
methods are then analyzed and compared to the traditional 
models mentioned above. 

 
II. PRELIMINARIES 

A. Wavelet Transform  

In recent years, newly developed Wavelet theory has 
become largely popularized by the work of scientists such as 
Ingrid Daubechies, Ronald Coifman, and Victor Wickerhauser 
[26, 27]. In order to perform the wavelet denoising of the 
historical stock data, we must first create an M-band wavelet 
transform matrix that we can then use in the wavelet denoising 
process. Let M be a positive integer (greater than or equal to 2). 
An M-band wavelet transform involves the decomposition of a 

N dimensional signal (where N =   ) into M different 
frequency levels. The M-Band Wavelet Transform is 
determined by M sets of filter banks satisfying certain 
properties [18]. The filter bank values are able to separate the 
signal into the different components [17]. In our research we 
used 4-Band Wavelets. Let 𝛼,,, and 𝛿 denote the filter banks. 
Then:  
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The structure of the M-Band wavelet transform matrix can 
be generalized into a matrix with dimensions       (where 
K is a positive integer) where the matrix is orthogonal. 
Therefore, its transpose is equal to its inverse. For the 
construction of a wavelet transform matrix for our experiments, 
we created a MATLAB function that was able to generate a 
wavelet transform matrix of any dimension   , given the band 
type of M and the filter bank values. In this research we 
generated a four band         wavelet transform matrix 
with the given filter banks [18].  

Below is an example of a 4-Band       wavelet 
transform matrix.  

 

 

Figure 1.  Example of a 16x16 4-Band Wavelet Transform Matrix 

 

Below are the given filter bank values that we used for our 
wavelet transform matrix in the wavelet denoising process. [7] 

𝛼=[−0.067371764;0.094195111 
;0.40580489;0.567371764;0.567371764; 0.40580489; 
0.094195111;  −0.067371764] 

𝛽=[−0.094195111; 0.067371764; 0.567371764; 0.40580489; 
−0.40580489; −0.567371764; −0.067371764; 0.094195111] 

𝛾=[−0.094195111; −0.067371764; 0.567371764; 
−0.40580489; −0.40580489; 0.567371764; −0.067371764; 
−0.094195111] 

𝛿=[−0.067371764; −0.094195111; 0.40580489; 
−0.567371764; 0.567371764; −0.40580489; 0.094195111; 
0.067371764] 
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B. Wavelet Denoising 

Before subjecting the historical stock data to different tests, 
the data was first denoised to preserve key features. This was 
done by using a wavelet transform method. Historical stock 
data was placed into a       column vector. A          
wavelet transform matrix was then created using predetermined 
filter banks. The stock data vector and the wavelet transfer 
matrix were them multiplied to create a new        column 
vector. The data was then split into four separate       
column vectors. The first vector containing rows 1 to 64 
representing low frequency components of original data was 
left untouched while the other three column vectors 
representing higher frequency components of data were 
denoised. A threshold value used for denoising procedure was 
calculated individually for each of these three high frequency 
components of data. To calculate the threshold value, the 
median absolute deviation also was calculated for each matrix 
with a method in MATLAB. The absolute value of each value 
of each high frequency component was then compared to its 
respective threshold values [7]. In case the value would be 
lower than the threshold it would be changed to zero. 
Otherwise, if it was greater than or equal to the threshold value, 
the value would remain the same. Throughout our testing, most 
of the values ended up being set to zero. After the threshold 
filtering, we recombined the first 64 rows along with the new 
192 rows to make another        column vector. We 
multiplied that with the transpose of the wavelet transform 
matrix to find the denoised vector [16, 18]. This process was 
repeated 4 times for each respective time stamp. Let W 
represent the Wavelet Transform matrix and T represent the 
stock price vector. Then Wavelet Transform of T is given by 

WT  [

  

  

  

  

] where    represents the low frequency component 

while    represents the high frequency components for 
       . Following is the mathematical formulation of the 

denoised procedure where     represents the     coordinate of 

  , for        . 

Let λi be the threshold value: 
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After threshold is applied, recombine the low frequency 
component with the 3 denoised high frequency components 
into a singular vector and multiply the vector by the transpose 
of the wavelet transform matrix, W, to get the denoised “clean” 
vector. Figures 2-5 below show the denoised stock data 
overlaid and compared to the historical stock data for each 
timestamp.  

 

Figure 2.  Historical vs. Denoised Data for 9:30 

 

 

Figure 3.  Historical vs. Denoised Data for 11:30 

 

 

Figure 4.  Historical vs. Denoised Data for 13:30 
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Figure 5.  Historical vs. Denoised Data for 15:30 

 
III. MACHINE LEARNING BASED METHODS 

A. SVR Models 

Support Vector Regression is a machine learning algorithm 
which uses labeled data to output singular values. SVR aims to 
find a hyperplane that maximizes the margin within a certain 
range and can be effective in both linear and non-linear 
examples to predict stock prices. SVR results are often 
quantified with a Root Square Mean Error value to show the 
accuracy between the predicted prices and the actual prices. 

SVR uses a training set of predictors {            } and 
the predictor’s respective label values {            } . The 
goal of the predictors and labels is developing a model which 
makes predictor values within a certain error bound   which 
allows us to choose how tolerant the bound is.   

Instead of having to express our output values as binary 
which happens in SVM we can express it as all real numbers. 
Thus, knowing this we can express y as: 

   ∑  𝛼  𝛼 
               

     

where  (     ) is a Gaussian kernel which we use to predict 

our stock price paths. 

Of course, the predictor values cannot always be 
completely accurate so we can introduce slack variables    ,   

  
which denotes the deviations from the error bound. This 
transforms into an optimization problem, which can be written 
as:  
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where   ,    
                 Therefore our SVR 

regression function is given by: 

      ∑  𝛼  𝛼 
                 

     

 

 

Figure 6.  Linear SVR Kernel 

 

 

Figure 7.  Curved SVR Kernel 

 

The key values that we focused on in our SVR calculations 
were the Mean Square Error, and by extension, the Root Mean 
Square Error (RMSE), to see how much the predicted value of 
the stock data varied from the actual historical stock data. We 
utilized a regression learner toolbox in MATLAB to conduct 
all our calculations. We also ran regressions with several 
kernels, including linear, quadratic, cubic, fine Gaussian, 
medium Gaussian, and coarse Gaussian. We tested both our 
original stock data and our wavelet denoised stock data as 
inputs in two different experiments. Within MATLAB, we 
created an identical corresponding matrix for both the historical 
and denoised data. First, we used the historical data as an input 
for the different SVR models. We then compared the model 
against the identical copy of the historical data to see how it 
performed. The toolbox outputted a RMSE value which was 
then converted into a standardize RMSE value. Other values 
we took note of included the R-squared values and the Mean 
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absolute error. This step was repeated with all the different 
methods of SVR previously mentioned for a singular time 
value. We then repeated these steps with the three other times 
that we chose throughout the day and then repeated all these 
steps for our denoised data. Our output for the RMSE values 
and R-squared values was evaluated by taking the average of 
the 4 different outputs at each respective time stamp (9:30, 
11:30, 13:30, 15:30) for each separate kernel. (Done separately 
for both the historical and denoised data).   

1) Historical Data  
 

TABLE I.  RMSE AND R-SQUARED VALUES FOR EACH SVR KERNEL 

TYPE 

Kernel  RMSE Values  R-Squared Values 

Linear 10.021 1.00 

Quadratic 13.000 .99 

Cubic 15.815 .99 

Fine Gaussian 29.151 .97 

Medium Gaussian 18.364 .99 

Coarse Gaussian 15.110 .99 

 

2) Denoised Data 
 

TABLE II.  RMSE AND R-SQUARED VALUES FOR EACH SVR KERNEL 

TYPE 

Kernel  RMSE Values R-Squared Values  

Linear  10.072 1.00 

Quadratic 12.889 .99 

Cubic 15.234 .99 

Fine Gaussian 20.790 .99 

Medium Gaussian 15.632 .99 

Coarse Gaussian 11.994 1.00 

 

3) Discussion of Tables I and II 
As you can see the table that contains the cleansed/denoised 

data has overall smaller RMSE values. This illustrates how 
with the denoising process the data becomes more accurate, as 
RMSE illustrates the amount of error the prediction has made 
and comparing the RMSE values of the denoised table with 
those of the true historical data we can see that the SVR makes 
more accurate predictions using the denoised data as compared 
to the historical data. Also comparing the R-Squared values of 
each table we can see how the denoised data has a higher R-
Squared value on average as compared to the true historical 
data. This means the correlation between the SVR predicted 
stock price values and the real stock price values is higher 
using the denoised data as compared to using the true historical 
data.  

B. Neural Networks  

Neural network is an artificial intelligence-like machine 
learning technology that simulates the working principle of the 
human brain. It builds a mathematical model or calculation 
model that loosely mimics the structure and function of a 

biological neural network (such as an animal’s central nervous 
system, especially the brain), and is used to estimate or 
approximate functions. They support the processing of multiple 
data types such as images, texts, voices, sequences, etc., and 
can realize classification, regression, and prediction.  

There are many types of neural networks that have evolved. 
A common Multilayer Network consists of the following three 
parts. These three parts are visualized in Figure 8 below. 

1. Input layer: A multitude of neurons accept many non-
linear input information. The input message is called the 
input vector, which is the input data. 

2. Hidden layer(s): composed of many neurons and links 
between the input layers themselves by activation 
functions and the output layer, responsible for data 
processing. Although hidden layers can have numerous 
layers, they are usually only employed with one. The 
number of nodes (neurons) in the hidden layer is variable, 
but the larger the number, the more significant the non-
linearity of the neural network, and the more obvious the 
robustness of the neural network. 

3. Output layer: in the output layer, information is 
exchanged, evaluated, and weighed to provide an output 
result. The output message is called the output vector. 

 

 

Figure 8.  Model of a standard Neural Network illustrating three different 

layers 

 

Layers contain nodes each with values. Usually, these 
nodes are connected to all the other nodes in the next and 
previous layer, and the connection that is calculated based on 
training data. A node’s value is calculated as the summation of 
the weight multiplied by the node value of all the nodes is 
inputted into an activation function, and the resultant value is 
transmitted to the next layer’s appropriate nodes. This is 
calculated throughout all the hidden layers until finally the 
nodes in the output layer have been filled, and then the network 
generates results. To adjust the neural network, the “connection 
weight” between neurons and the threshold of each functional 
neuron must be adjusted according to the training given 
samples using backward propagation gradient descent method. 
The final model is expected to have a certain generalization 
ability for unknown samples. 
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The number of hidden layer neurons is highly crucial to 
determine throughout the network design process. Too many 
hidden layer neurons will increase the number of network 
computations and easily create over-fitting issues; too few 
neurons will impair network performance and lead it to fail to 
reach the desired outcomes. The number of hidden layer 
neurons in a network is proportional to the difficulty of the 
issue, the number of input and output layers, and the error 
thresholds.  

The neural network algorithm can build a non-linear model 
driven by market data by simulating the neuron algorithm and 
obtain a better pricing effect than the parameter model, which 
makes option pricing more objective and accurate. 

We used the MATLAB Neural Network Time series 
toolbox to predict the stock prices, for both our denoised as 
well as real data. RMSE values and the error graphs were 
recorded and presented below.  

 

 

Figure 9.  Historical Stock data. RMSE:14.9 

 

 

Figure 10.  Denoised Stock Data. RMSE: 13.7 
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1) Discussion of Figures 9 and 10:  
As shown in the 2 figures above, the graph illustrating the 

denoised data has the lower RMSE value indicated compared 
to the Historical Data, meaning that the neural network was 
able to better predict the stock price data using the denoised 
data as compared to the Historical Stock Price Data.  

C. Monte Carlo Simulation 

Introduced by Boyle in the late 70s the Monte Carlo 
Simulation has been one of the main methods to evaluate the 
value of an option [25]. The Simulation is based on risk neutral 
valuation (Meaning we can assume that all assets will grow and 
be discounted at a risk-free rate). The Simulation itself is in 3 
critical steps:  

1. Many random paths are generated of the underlying 
variables 

2. Calculate the “payoff” value of the option in each path 
created in step 1 

3. Values are discounted to today and averaged 

The result is the price of the option.  

Mathematically the option price O in the Monte Carlo 
Simulation can be written as an integral that illustrates the 
expected value of the discounted payoff under a risk neutral 
probability measure. [13] 

[      {                                }   

        ∫    ∫     
 

 
                     

 

 

 ∫         [    ]  

For some function   [        and where u represents a 
point in [     , and U~U[      is a random point with uniform 
distribution.  

1) Least Squares Monte Carlo Method:  
The Least Squares Monte Carlo Method is one of the 

methods for evaluating American Style choices. The approach 
use the N random route created by geometric Brownian motion 
for stock price prediction. The random paths can be expressed 

as:    
                   and       . If we know 

    
        

       , we can set      
  which is the current 

equity value and                
        which represents 

the value of the deferred exercise. Next, we can perform the 
regression of Y as a function of polynomials 
                 We can use this regressed value to decide 
whether to exercise early. Meaning that option holders will 
compare whether the immediate payoff value is higher than the 
projected payoff value with continuation. If the immediate 
payoff value is higher the option holder will exercise the 
option, if it is not higher then they will not exercise the option. 
[13] 

2) Wavelet Denoised Based Monte Carlo Method.  
Using the Support Vector Regression and the Neural 

Network Methods mentioned before we inputted the historical 
stock data into each of the respective MATLAB toolboxes. The 
prediction paths from each of these methods would each 
become the paths for our Monte Carlo Method. Then using 

each of these paths we manually performed the least squares 
method as mentioned above. For the Least Squares Monte 
Carlo, we used the prebuilt MATLAB method in the financial 
toolbox. 

 

 

Figure 11.  A graph of the Monte Carlo Simulation 

 

IV. EXPERIMENTAL RESULTS 

A. Input Data (Put Option) 
 

TABLE III.  INPUT DATA OF THREE DIFFERENT TESLA OPTIONS SELECTED 

FROM WWW.YAHOO.COM 

Strike Price Volatility Initial Strike Price Expiration Date 

350 141.41% 711.92 8/27/2021 

400 110.55% 711.92 8/27/2021 

450 97.46% 711.92 8/27/2021 

 

B. Output Data (Put Option): 
 

TABLE IV.  RMSE AND OPTION VALUE RESULTS WHEN USING ALL FOUR 

DIFFERENT METHODS 

Methods 
Support Vector 

Regression 

Neural 

Networks 

Brownian 

Motion 

Black-

Scholes 

RMSE 0.054 0.0009 0.026 0.034 

Option Value 1. 0.06366 0.023014 0.0535 0.0348 

Option Value 2. 0.21921 0.1614 0.1719 0.1323 

Option Value 3. 0.35812 0.3198 0.3091 0.2642 

 

V. DISCUSSION 

For our experiments, our goal was to test which of the 
methods was the most accurate in predicting option prices. To 
do this, for each method, we calculated the previously 
mentioned RMSE (Root-mean-squared error). The RMSE is a 
way to quantify the error between the values predicted by a 
model and the values observed. The RMSE was calculated in 
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MatLab toolboxes that we also used to calculate option prices. 
The goal is to minimize the RMSE value to prove a high 
degree of accuracy between option prices the model predicted 
and the observed values.  

Between the four methods, Support Vector Regression, 
Neural Networks, Monte Carlo Method, and Black-Scholes, 
Neural Networks inputted into a Least Squares Monte Carlo 
Method had the lowest RMSE score with a score of 0.0009. 
The Black-Scholes model had a higher RMSE value of 0.034 
which is expected. As mentioned above, this model has many 
limitations, and doesn’t consider the unique nature of 
American Options. Interestingly, the SVR had the highest 
RMSE value of 0.054. This may be due to the variety of 
different kernels that we used for these calculations. In the 
future, we can look for a specific kernel that is the most 
effective for this problem and use that. Finally, the Brownian 
Motion based Monte Carlo method had an RMSE value of 
0.026 which was the second lowest out of the four methods. 

However, all four of these RMSE values were very low 
(standardized RMSE values range from 0-1). Hence, all the 
models were still quite accurate when compared to the 
observed values. To further this research in the future, other 
methods that we mentioned but did not test can be considered. 
As mentioned earlier, a specific SVR kernel should be 
determined, and Neural Network calculations can also be 
specific to become an extremely accurate predictor. 

 

VI. CONCLUSION REMARKS AND FUTURE RESEARCH 

In this paper, the put options are predicted based on the 
stock price, the exercise price, the time to expiration, the 
interest rate, and the volatility. Firstly, we utilized a 4-Band 
Wavelet Transform to clean up the data and make it more 
reliable. After applying Support Vector Regression and Neural 
Networks to wavelet based denoised stock price data, we were 
able to predict the stock price path at a high accuracy and then 
we inputted these paths into a Least Squares Monte Carlo 
Function. We then compared these results to the more 
traditional methods such as Black-Scholes and the Least 
Squares Monte Carlo using Brownian Motion. The 
experiments and comparisons have determined that the Neural 
Network method is the best fit and is more accurate than the 
other methods. As for future research to make the algorithm 
more in depth, Wavelet based Quasi Monte Carlo Methods 
could be used, a Wavelet based binomial tree method also 
could be added, and more in-depth SVR and Neural Networks 
could be appended for more precise predictions. 

 

APPENDIX FOR CODE 

Original code to create the wavelet transform matrix:  

m, being a matrix of 0s, variables being a matrix of the filter 
banks. 

function [m] = filling(m,bandtype,variables) 

i = 1; 

count = 0;  

c = 1; % colum in variables  

len1 = length(m); 

len2 = length(variables); 

x = len2/2; 

for l = 1:len1 

  for j = 1:bandtype 

      if i + len2 -1 > len1  

          m(l,1:x) = variables(c,x+1:len2); 

          m(l,(len1-x)+1:len1) = variables(c,1:x); 

      else 

      m(l,i:i+len2-1)= variables(c,:);    

      end 

  end 

  

  i = i + bandtype; 

  count  = count +1;  

  if count == length(m)/bandtype  

      count = 0; 

      i = 1; 

      if c == length(m)/bandtype 

          c = 1;  

      else 

          c = c + 1; 

      end 

  end  

end 

end 

 
Original code to calculate the threshold values and denoise 

the historical stock data vector:  

T, being the original historical stock data vector. 

A1 = A(1:64,:); 

D1 = A(65:128,:); 

D2 = A(129:192,:); 

D3 = A(193:256,:); 

[thresholdsD1, thresholdsD2, 

thresholdsD3]=thresholds(D1,D2,D3) 

  

D1a=filteredD1(D1,thresholdsD1) 

D2a=filteredD2(D2,thresholdsD2) 

D3a=filteredD3(D3,thresholdsD3) 

E=[A1;D1a;D2a;D3a] 

X=transpose(S)*E  

  

function [thresholdsD1,thresholdsD2,thresholdsD3] = 

thresholds(x,y,z) 

B=mad(x) 

thresholdsD1=(B/0.6745)*sqrt(2*log(256)) 

C=mad(y) 

thresholdsD2=(C/0.6745)*sqrt(2*log(256)) 

D=mad(z) 

thresholdsD3=(D/0.6745)*sqrt(2*log(256)) 

end 

 function [D1a] = filteredD1(x,y) 

counter=1 

while counter <= 64 
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    if abs(x(counter,1))>=y 

        counter=counter+1; 

    else 

        x(counter,1)=0; 

        counter=counter+1; 

    end 

end 

D1a=x 

end 

  

function [D2a] = filteredD2(x,y) 

counter=1 

while counter <= 64 

    if abs(x(counter,1))>=y 

        counter=counter+1; 

    else 

        x(counter,1)=0; 

        counter=counter+1; 

    end 

end 

D2a=x 

end 

  

function [D3a] = filteredD3(x,y) 

counter=1 

while counter <= 64 

    if abs(x(counter,1))>=y 

        counter=counter+1; 

    else 

        x(counter,1)=0; 

        counter=counter+1; 

    end 

end 

D3a=x 

end 
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