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Abstract- This paper mainly concentrates on the different 
methods of software reliability assessment and prediction. We 
are also shown systematically and scientifically that the 
software reliability levels assessed are proved by facts and are 
relatively modest. 
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I.  INTRODUCTION  

Maintaining the safety in the complex and critical software 
systems involved an analysis of advantages and disadvantages 
related to the safety and reliability failures. Ex: safety of 
nuclear power stations. Freshness, complexity, criticalness 
become the threats to the safety and the reliability of the 
software systems. Software Reliability requirements will 
heavily depend upon a careful analysis of the general domain 
of which the developed software is one part. In a safety and 
complex system, like nuclear reactor protection system, the 
necessity can be expressed as a probability of software failure 
on demand(in the case of the software-based Sizewell B 
Primary Protection System, the requirement was generally 10

-3 

pfd). In a continuous control system, for example in aircraft 
flight control, the reliability requirement might be expressed as 
a failure rate (e.g. 10

-9
 probability of failure per flight hour). 

Finally it may be helpful to mention the details of different 
misconceptions about the characteristics of software reliability 
generally by using a probabilistic approach. 

 

II. THE CHARACTERISTICS OF THE SOFTWARE FAILURE 

PROCESS 

There is a major differences in reliability engineering 
between random failures (generally hardware failures) and 
systematic failures (e.g. faults coming out of the design 
problems, generally not coming from software developed) is 
understand by the researchers in bad manner. The term 
systematic here indicates the fault mechanism.  

There is common uncertainty in the process of the 
operational environment of the developed software. 
Importantly, there is imprecise about when a member of the set 
of input cases that trigger a particular fault will next occur. 
Thus there is no clear idea about when the next failure of the 
program or process will occur. This applies the usage of 

probabilistic indicators of reliability even for ‘systematic’ 
failures of the developed software. The most significant 
instruction is that the failure processes are not deterministic for 
either ‘systematic’ faults or for random faults. The same 
probabilistic measures of reliability are used in both types of 
faults (The probability models for evaluating software 
reliability differ from the models used for hardware faults [Lyu 
1996]). 

 

III. RELIABILITY GROWTH ASSESSMENT AND PREDICTION 

Software Reliability Growth Models (SRGMs) are statistics 
based methods that perform the   direct assessment of the 
reliability and authenticity of a software product from the 
observations of its actual failure processes during operation and 
maintenance. In simple terms, we can say that when a software 
failure happens there will be a scope to recognize and delete 
the SDLC design fault which caused the later failures, where 
the software is modified for further execution again, which 
leads finally to fail once again. The successive times  of  
failure-free working of the software act as  input  to  statistical 
models, which then uses the input data to assess the present 
reliability of the program under observation, and to assume  
how the software reliability will vary in the near future.  

There are so many software reliability growth models exist, 
which are the detailed probability reliability assessment models 
to specify probabilistic software failure process. But there is no 
single and unique model that can assess the software reliability 
with accurate results in all circumstances. With the last 10 
years research results, this problem has been overcome by the 
different methods for  analyzing  the  predictive accuracy of 
different software reliability growth models on a particular 
source of failure data [Abdel-Ghaly, Chan et al. 1986; 
Brocklehurst and Littlewood 1992; Lyu 1996]. The final results 
are  that we can now use and apply many of the available 
software reliability growth models(SRGMS)  with the failure 
data coming from a particular software product, and eventually 
we can learn which (if any) of the different predictions of the 
software reliability can be trusted.  

With  the  limitations specified above with the statistically 
representative test cases for the prediction of the software 
reliability, it is now possible to obtain correct software 
reliability estimations  in  different cases and most significantly 
to  know  when particular predictions can be understood and 
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trusted. But it is clear that such software reliability growth 
models are really only sufficient for the retrieval of the very 
relevant reliability goals. This can be seen by considering the 
following examples.  

Table 1 shows a simple and straightforward analysis of 
limited software failure data from the testing and debugging of 
a command and control system of US Army, using a particular 
software reliability growth model. The question ‘how the 
developed program is reliable now?’  Is answered immediately 
following the 40th, 50th, . . , 130th failures, in the form, (in this 
case) of an average time to next failures. Alongside the mttf in 
the table is the total execution time on test that was needed to 
achieve that estimated mttf. We can say that, the mttf of this 
system and the reliability of the system improves as the testing 
of the program advances. However, the last column shows a 
clear law of diminishing returns: further modifications in the 
mttf need more software testing process. 

 

TABLE I.  An illustration of the law of diminishing returns in heroic 
debugging or defect removal of the software. Here the total execution time of 
the program (in seconds) is required to get a required mean time to software 

failures is compared and evaluated with the mean itself. 

SAMPLE SIZE, i ELAPSED TIME, ti ACHIEVED mttf, mi ti/mi 

40 6380 288.8 22.1 

50 10089 375.0 26.9 

r60 12560 392.5 32.0 

70 16186 437.5 37.0 

80 20567 490.4 41.9 

90 29361 617.3 47.7 

100 42015 776.3 54.1 

110 49416 841.6 58.7 

120 56485 896.4 63.0 

130 74364 1054.1 70.1 

 

This is a single proof that involves the use of a specific 
measure or attribute of software reliability (mttf-mean time to 
failure), and uses a specific model to carry out the calculations, 
and a specific developed program under the observation for 
reliability assessment.  Also, same kind of the reliability results 
are observed throughout all the phases of SDLC with different 
data sources and for different software reliability growth 
models (SRGMS). Figure 1 shows an analysis of software 
failure data from a system in operational use by the end user, 
for which software and hardware design modifications were 
being introduced as a result of the software failures. Here the 
current rate of occurrence of software failures (ROCOF) is 
calculated at different times, using different software reliability 
growth models (SRGMs) from that used in Table 1. The dotted 
line is fitted manually to give a visual impression of what, 
again, seems to be a very clear law of diminishing returns. 
Once again, the level of software reliability reached here is 
quite modest: about 10-2 failures per hour of operational use of 
the software, which is several times of magnitude, which is in 
short form we could call ‘ultra-high dependability’ (compare it 
with the 10-9 per hour requirement of the civil aircraft flight 
control systems). Most importantly, it is by no means clear 

about how the details of the future software reliability growth 
models of this system will look like. For example, it is not clear 
to what the curve is asymptotic: could one expect that 
eventually the ROCOF will approach zero, or not. 

 

Figure 1.  Estimates of the rate of occurrence of failures for a system 

experiencing failures due to software faults and hardware design faults. The 

broken line here is fitted by eye. 

 

A program begins the life with a very limited number of 
faults and run time errors, and these will be happened 
randomly during operation of the developed program. Different 
software faults will leads to the overall unreliability of the 
program in different ways: some faults are ‘larger’ than others. 
‘Large’ here means that the rate at which the fault would show 
itself for the effect of the program in execution is large: 
different faults have different rates of occurrence in the 
developed program. Table 2 specifies an example of this issue 
depending upon a large database of problem reports for some 
large IBM software systems that were developed already 
[Adams 1984]. 

 

TABLE II.  Data from [Adams 1984] 

 Rate Class 

 1 2 3 4 5 6 7 8 

 Mean time to occurrence in kmonths for rate class 

 60 19 6 1.9 .6 .19 .06 .019 

Product Estimated percentage of faults in rate class 

1 34.2 28.8 17.8 10.3 5.0 2.1 1.2 0.7 

2 34.3 29.0 18.2 9.7 4.5 3.2 1.5 0.7 

3 33.7 28.5 18.0 8.7 6.5 2.8 1.4 0.4 

4 34.2 28.5 18.7 11.9 4.4 2.0 0.3 0.1 

5 34.2 28.5 18.4 9.4 4.4 2.9 1.4 0.7 

6 32.0 28.2 20.1 11.5 5.0 2.1 0.8 0.3 

7 34.0 28.5 18.5 9.9 4.5 2.7 1.4 0.6 

8 31.9 27.1 18.4 11.1 6.5 2.7 1.4 1.1 

9 31.2 27.6 20.4 12.8 5.6 1.9 0.5 0.0 

 



International Journal of Science and Engineering Investigations, Volume 2, Issue 12, January 2013 67 

www.IJSEI.com            Paper ID: 21213-10 ISSN: 2251-8843 

Table 2. Data from [Adams 1984], showing the very great 
difference in ‘sizes’ of software faults. Here size means the 
mean time to discover a software fault. Adams classified the 
faults into 8 classes as per their  sizes, and the notable aspect of 
the above figures is the very large differences between the 
‘largest’ and the ‘smallest’. Perhaps most startling is that about 
one third of faults fall into the 60 kmonth class. i.e. a fault from 
this class would only be seen at the rate of about once every 
5000 years. 

During software reliability growth we assume that a fix or 
correction is performed at every point of failure. Let us assume 
for simplicity that each fix attempt is successful. As debugging 
continuously progresses, there will be a scope for a software 
fault with a larger occurrence rate to show itself before a fault 
with a smaller occurrence rate in the program: more clearly, for 
any time t, the probability that fault A reveals itself during time 
t will be smaller than the probability that B reveals itself during 
t, if the rate of A is smaller than the rate of B. In other ways, 
we can say that the major faults will be removed before that the 
minor software faults. As debugging progresses and the 
program becomes more reliable day by day, it becomes harder 
to find the inner software faults effectively(because the failure 
rate of the program is  becoming smaller and smaller), and the 
modifications of the software reliability resulting from these 
fault-removals are also becoming smaller and smaller 
successfully in a very less span of time. 

 

IV. INDIRECT WAYS OF EVALUATING SOFTWARE 

RELIABILITY 

There are specific critical and most important limitations to 
the levels of software reliability that can be explained by using 
the direct software reliability evaluation approach, based on 
statistical analysis and reporting of operational software testing 
data. This problem we can overcome by using some other ways 
of the software reliability assessment. They are: claims based 
on quality of production, fault tolerance. 

A. Reliability Claims Based on process quality 

Even though we use very good design and development 
strategies for the efficient and effective development of the 
software in most of the software industries for getting the high 
reliability levels, but we fails to get the levels at acceptable 
stage. For example, in [RTCA 1992] there is the statement:  

‘ . . Techniques for estimating the post-verification 
probabilities of software errors were examined and verified. 
The goal was to implement numerical requirements for such 
probabilities for digital computer-based equipment and systems 
certification. But the conclusion was that presently available 
procedures do not produce the results in which acceptable level 
of confidence can be achieved for this requirement. 
Accordingly, this document does not state post-verification 
software error requirements in these terms.’  

We can assume that the procedures and practices that are 
recommended in the document RTCA 1992 are enough to 
justify software reliability claims at the required levels 

irrespective of the necessity for direct measurement of the 
software reliability parameters.  

The problem in finding out any reliability level for a 
developed program comes from evidence of the quality of the 
software development process came out from two sources. In 
the first place, there is small empirical evidence available of the 
operational reliability for software developed using particular 
development processes. Secondly, even if extensive evidence 
were available for a particular process, it would merely concern 
the software reliability that might be expected on average. The 
actual achieved reliabilities of the software would vary from 
one development to another in the form of programming 
languages, and thus there would be uncertainty involved in any 
reliability claim for a new software product to be developed 
and deployed in the future. 

B. Fault tolerance based on design diversity 

In hardware reliability engineering it is opined that the 
stochastic software failure processes of the different 
components in a parallel configuration are independent from 
one another. It is then easy to tell that a system of high 
reliability can be built by using unreliable components in many 
ways. If software versions were developed ‘independently’ of 
one another, then the version failures were also statistically 
independent, it would be possible to make claims for very high 
reliability. But, practicals show that design-diverse versions do 
not fail independently of one another as per [Knight and 
Leveson 1986b]. One reason for this is simply that the 
designers of the different versions tend to make similar 
mistakes. Another reason is more subtle [Eckhardt and Lee 
1985; Littlewood and Miller 1989]: even if the different 
versions really are independent objects, they will still  fail  
dependently as  a  result  of  change of  the criticalness of the 
hardware problem from one input case to another. Put simply, 
the failure of version A on a particular input suggests that this 
is a ‘difficult’ input, and thus the probability that version B will 
also fail on the same input is greater than it otherwise would 
be.  

On the other hand, the experiments [Anderson, Barrett et al. 
1985; Knight and Leveson 1986a] find out that fault tolerance 
brings some improvement in reliability compared with single 
versions. 

C. Formal verification 

It is an attempt to move away from probability-based 
assessments of software reliability towards deterministic, 
logical claims for complete perfection for the software 
reliability. Thus if a formal specification of the domain 
problem could be trusted, a proof that the developed program 
truly implemented that formal specification and it is guarantee 
that no failures could arise with design faults in the 
implementation of the software. It could be said that the 
product was ‘perfectly reliable’ with respect to such a class of 
failures. It has limitations. 

In the first place, proofs are subject to error. This might be 
direct human error, in proofs by hand or with the aid of 
semiautomatic tools, and/or error by the proof-producing 
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software in machine proof. Importantly, one could assign a 
failure probability to proofs, and use this in a probabilistic 
analysis. Anyway, such probabilities would be difficult to 
incorporate into a dependability evaluation of the software 
versions: if the proof were erroneous, then the true failure rate 
will be confused to estimate. 

There are also practical problems. Although computerized 
approaches to formal verification progressed, there are still 
strict limits to the size and complexity of problems that can be 
addressed in this way. Finally, it has to be said that it is often 
unreasonable to assume that the formal specification really 
captures the more informal engineering requirements other 
than the other software reliability assessment methods. If the 
formal specification is wrong, a proof that the implementation 
of the program conforms to the specification will not guarantee 
that failures cannot occur. 

 

V. SUMMARY AND CONCLUSIONS 

This paper concentrated on the problem of assessing the 
reliability of software before it is deployed in a safety-critical 
system. Thus direct evaluation of reliability, using statistical 
methods  based  upon (real or simulated) operational data will 
allow quite modest claims to be made - putting it another way, 
to make claims for ultra-high reliability this way would require 
infeasibly large amounts of operational exposure of the 
developed software. There are some indirect methods to 
answer this problem. 

Methods for evaluating reliability by combining evidence 
from different sources are helpful, but much better 
understanding is needed of the complex interdependencies 
between different types of evidence before these approaches 
can be trusted for safety-critical systems software reliability 
assessment. The question of how much it is reasonable to trust 
the judgment of experts leads to repay further study for these 

methods. (See [Henrion and Fischhoff 1986] for an interesting 
- and worrying - study showing the tendency for physicists, 
both individually and as a community, to be overconfident in 
their judgments.) 

It should be noted that the results in this paper concern the 
limits to the levels of reliability that can be evaluated prior to 
the deployment of a system and not after the deployment of a 
system. This do not find out what levels of reliability can be 
achieved.  
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