

65

International Journal of

Science and Engineering Investigations vol. 2, issue 12, January 2013

ISSN: 2251-8843

Different Issues in Predicting the Software Reliability

Bonthu Kotaiah
1
, R. A. Khan

2

1
Research Scholar, Babasaheb Bhimrao Ambedkar University, Lucknow, India

2
Associative Professor, Babasaheb Bhimrao Ambedkar University, Lucknow, India

 (1kotaiah_bonthuklce@yahoo.com, 2khanraees@yahoo.com)

Abstract- This paper mainly concentrates on the different
methods of software reliability assessment and prediction. We
are also shown systematically and scientifically that the
software reliability levels assessed are proved by facts and are
relatively modest.

Keywords-Software reliability, reliability prediction, SRGM.

I. INTRODUCTION

Maintaining the safety in the complex and critical software
systems involved an analysis of advantages and disadvantages
related to the safety and reliability failures. Ex: safety of
nuclear power stations. Freshness, complexity, criticalness
become the threats to the safety and the reliability of the
software systems. Software Reliability requirements will
heavily depend upon a careful analysis of the general domain
of which the developed software is one part. In a safety and
complex system, like nuclear reactor protection system, the
necessity can be expressed as a probability of software failure
on demand(in the case of the software-based Sizewell B
Primary Protection System, the requirement was generally 10

-3

pfd). In a continuous control system, for example in aircraft
flight control, the reliability requirement might be expressed as
a failure rate (e.g. 10

-9
 probability of failure per flight hour).

Finally it may be helpful to mention the details of different
misconceptions about the characteristics of software reliability
generally by using a probabilistic approach.

II. THE CHARACTERISTICS OF THE SOFTWARE FAILURE

PROCESS

There is a major differences in reliability engineering
between random failures (generally hardware failures) and
systematic failures (e.g. faults coming out of the design
problems, generally not coming from software developed) is
understand by the researchers in bad manner. The term
systematic here indicates the fault mechanism.

There is common uncertainty in the process of the
operational environment of the developed software.
Importantly, there is imprecise about when a member of the set
of input cases that trigger a particular fault will next occur.
Thus there is no clear idea about when the next failure of the
program or process will occur. This applies the usage of

probabilistic indicators of reliability even for ‘systematic’
failures of the developed software. The most significant
instruction is that the failure processes are not deterministic for
either ‘systematic’ faults or for random faults. The same
probabilistic measures of reliability are used in both types of
faults (The probability models for evaluating software
reliability differ from the models used for hardware faults [Lyu
1996]).

III. RELIABILITY GROWTH ASSESSMENT AND PREDICTION

Software Reliability Growth Models (SRGMs) are statistics
based methods that perform the direct assessment of the
reliability and authenticity of a software product from the
observations of its actual failure processes during operation and
maintenance. In simple terms, we can say that when a software
failure happens there will be a scope to recognize and delete
the SDLC design fault which caused the later failures, where
the software is modified for further execution again, which
leads finally to fail once again. The successive times of
failure-free working of the software act as input to statistical
models, which then uses the input data to assess the present
reliability of the program under observation, and to assume
how the software reliability will vary in the near future.

There are so many software reliability growth models exist,
which are the detailed probability reliability assessment models
to specify probabilistic software failure process. But there is no
single and unique model that can assess the software reliability
with accurate results in all circumstances. With the last 10
years research results, this problem has been overcome by the
different methods for analyzing the predictive accuracy of
different software reliability growth models on a particular
source of failure data [Abdel-Ghaly, Chan et al. 1986;
Brocklehurst and Littlewood 1992; Lyu 1996]. The final results
are that we can now use and apply many of the available
software reliability growth models(SRGMS) with the failure
data coming from a particular software product, and eventually
we can learn which (if any) of the different predictions of the
software reliability can be trusted.

With the limitations specified above with the statistically
representative test cases for the prediction of the software
reliability, it is now possible to obtain correct software
reliability estimations in different cases and most significantly
to know when particular predictions can be understood and

International Journal of Science and Engineering Investigations, Volume 2, Issue 12, January 2013 66

www.IJSEI.com Paper ID: 21213-10 ISSN: 2251-8843

trusted. But it is clear that such software reliability growth
models are really only sufficient for the retrieval of the very
relevant reliability goals. This can be seen by considering the
following examples.

Table 1 shows a simple and straightforward analysis of
limited software failure data from the testing and debugging of
a command and control system of US Army, using a particular
software reliability growth model. The question ‘how the
developed program is reliable now?’ Is answered immediately
following the 40th, 50th, . . , 130th failures, in the form, (in this
case) of an average time to next failures. Alongside the mttf in
the table is the total execution time on test that was needed to
achieve that estimated mttf. We can say that, the mttf of this
system and the reliability of the system improves as the testing
of the program advances. However, the last column shows a
clear law of diminishing returns: further modifications in the
mttf need more software testing process.

TABLE I. An illustration of the law of diminishing returns in heroic
debugging or defect removal of the software. Here the total execution time of
the program (in seconds) is required to get a required mean time to software

failures is compared and evaluated with the mean itself.

SAMPLE SIZE, i ELAPSED TIME, ti ACHIEVED mttf, mi ti/mi

40 6380 288.8 22.1

50 10089 375.0 26.9

r60 12560 392.5 32.0

70 16186 437.5 37.0

80 20567 490.4 41.9

90 29361 617.3 47.7

100 42015 776.3 54.1

110 49416 841.6 58.7

120 56485 896.4 63.0

130 74364 1054.1 70.1

This is a single proof that involves the use of a specific
measure or attribute of software reliability (mttf-mean time to
failure), and uses a specific model to carry out the calculations,
and a specific developed program under the observation for
reliability assessment. Also, same kind of the reliability results
are observed throughout all the phases of SDLC with different
data sources and for different software reliability growth
models (SRGMS). Figure 1 shows an analysis of software
failure data from a system in operational use by the end user,
for which software and hardware design modifications were
being introduced as a result of the software failures. Here the
current rate of occurrence of software failures (ROCOF) is
calculated at different times, using different software reliability
growth models (SRGMs) from that used in Table 1. The dotted
line is fitted manually to give a visual impression of what,
again, seems to be a very clear law of diminishing returns.
Once again, the level of software reliability reached here is
quite modest: about 10-2 failures per hour of operational use of
the software, which is several times of magnitude, which is in
short form we could call ‘ultra-high dependability’ (compare it
with the 10-9 per hour requirement of the civil aircraft flight
control systems). Most importantly, it is by no means clear

about how the details of the future software reliability growth
models of this system will look like. For example, it is not clear
to what the curve is asymptotic: could one expect that
eventually the ROCOF will approach zero, or not.

Figure 1. Estimates of the rate of occurrence of failures for a system

experiencing failures due to software faults and hardware design faults. The

broken line here is fitted by eye.

A program begins the life with a very limited number of
faults and run time errors, and these will be happened
randomly during operation of the developed program. Different
software faults will leads to the overall unreliability of the
program in different ways: some faults are ‘larger’ than others.
‘Large’ here means that the rate at which the fault would show
itself for the effect of the program in execution is large:
different faults have different rates of occurrence in the
developed program. Table 2 specifies an example of this issue
depending upon a large database of problem reports for some
large IBM software systems that were developed already
[Adams 1984].

TABLE II. Data from [Adams 1984]

 Rate Class

 1 2 3 4 5 6 7 8

 Mean time to occurrence in kmonths for rate class

 60 19 6 1.9 .6 .19 .06 .019

Product Estimated percentage of faults in rate class

1 34.2 28.8 17.8 10.3 5.0 2.1 1.2 0.7

2 34.3 29.0 18.2 9.7 4.5 3.2 1.5 0.7

3 33.7 28.5 18.0 8.7 6.5 2.8 1.4 0.4

4 34.2 28.5 18.7 11.9 4.4 2.0 0.3 0.1

5 34.2 28.5 18.4 9.4 4.4 2.9 1.4 0.7

6 32.0 28.2 20.1 11.5 5.0 2.1 0.8 0.3

7 34.0 28.5 18.5 9.9 4.5 2.7 1.4 0.6

8 31.9 27.1 18.4 11.1 6.5 2.7 1.4 1.1

9 31.2 27.6 20.4 12.8 5.6 1.9 0.5 0.0

International Journal of Science and Engineering Investigations, Volume 2, Issue 12, January 2013 67

www.IJSEI.com Paper ID: 21213-10 ISSN: 2251-8843

Table 2. Data from [Adams 1984], showing the very great
difference in ‘sizes’ of software faults. Here size means the
mean time to discover a software fault. Adams classified the
faults into 8 classes as per their sizes, and the notable aspect of
the above figures is the very large differences between the
‘largest’ and the ‘smallest’. Perhaps most startling is that about
one third of faults fall into the 60 kmonth class. i.e. a fault from
this class would only be seen at the rate of about once every
5000 years.

During software reliability growth we assume that a fix or
correction is performed at every point of failure. Let us assume
for simplicity that each fix attempt is successful. As debugging
continuously progresses, there will be a scope for a software
fault with a larger occurrence rate to show itself before a fault
with a smaller occurrence rate in the program: more clearly, for
any time t, the probability that fault A reveals itself during time
t will be smaller than the probability that B reveals itself during
t, if the rate of A is smaller than the rate of B. In other ways,
we can say that the major faults will be removed before that the
minor software faults. As debugging progresses and the
program becomes more reliable day by day, it becomes harder
to find the inner software faults effectively(because the failure
rate of the program is becoming smaller and smaller), and the
modifications of the software reliability resulting from these
fault-removals are also becoming smaller and smaller
successfully in a very less span of time.

IV. INDIRECT WAYS OF EVALUATING SOFTWARE

RELIABILITY

There are specific critical and most important limitations to
the levels of software reliability that can be explained by using
the direct software reliability evaluation approach, based on
statistical analysis and reporting of operational software testing
data. This problem we can overcome by using some other ways
of the software reliability assessment. They are: claims based
on quality of production, fault tolerance.

A. Reliability Claims Based on process quality

Even though we use very good design and development
strategies for the efficient and effective development of the
software in most of the software industries for getting the high
reliability levels, but we fails to get the levels at acceptable
stage. For example, in [RTCA 1992] there is the statement:

‘ . . Techniques for estimating the post-verification
probabilities of software errors were examined and verified.
The goal was to implement numerical requirements for such
probabilities for digital computer-based equipment and systems
certification. But the conclusion was that presently available
procedures do not produce the results in which acceptable level
of confidence can be achieved for this requirement.
Accordingly, this document does not state post-verification
software error requirements in these terms.’

We can assume that the procedures and practices that are
recommended in the document RTCA 1992 are enough to
justify software reliability claims at the required levels

irrespective of the necessity for direct measurement of the
software reliability parameters.

The problem in finding out any reliability level for a
developed program comes from evidence of the quality of the
software development process came out from two sources. In
the first place, there is small empirical evidence available of the
operational reliability for software developed using particular
development processes. Secondly, even if extensive evidence
were available for a particular process, it would merely concern
the software reliability that might be expected on average. The
actual achieved reliabilities of the software would vary from
one development to another in the form of programming
languages, and thus there would be uncertainty involved in any
reliability claim for a new software product to be developed
and deployed in the future.

B. Fault tolerance based on design diversity

In hardware reliability engineering it is opined that the
stochastic software failure processes of the different
components in a parallel configuration are independent from
one another. It is then easy to tell that a system of high
reliability can be built by using unreliable components in many
ways. If software versions were developed ‘independently’ of
one another, then the version failures were also statistically
independent, it would be possible to make claims for very high
reliability. But, practicals show that design-diverse versions do
not fail independently of one another as per [Knight and
Leveson 1986b]. One reason for this is simply that the
designers of the different versions tend to make similar
mistakes. Another reason is more subtle [Eckhardt and Lee
1985; Littlewood and Miller 1989]: even if the different
versions really are independent objects, they will still fail
dependently as a result of change of the criticalness of the
hardware problem from one input case to another. Put simply,
the failure of version A on a particular input suggests that this
is a ‘difficult’ input, and thus the probability that version B will
also fail on the same input is greater than it otherwise would
be.

On the other hand, the experiments [Anderson, Barrett et al.
1985; Knight and Leveson 1986a] find out that fault tolerance
brings some improvement in reliability compared with single
versions.

C. Formal verification

It is an attempt to move away from probability-based
assessments of software reliability towards deterministic,
logical claims for complete perfection for the software
reliability. Thus if a formal specification of the domain
problem could be trusted, a proof that the developed program
truly implemented that formal specification and it is guarantee
that no failures could arise with design faults in the
implementation of the software. It could be said that the
product was ‘perfectly reliable’ with respect to such a class of
failures. It has limitations.

In the first place, proofs are subject to error. This might be
direct human error, in proofs by hand or with the aid of
semiautomatic tools, and/or error by the proof-producing

International Journal of Science and Engineering Investigations, Volume 2, Issue 12, January 2013 68

www.IJSEI.com Paper ID: 21213-10 ISSN: 2251-8843

software in machine proof. Importantly, one could assign a
failure probability to proofs, and use this in a probabilistic
analysis. Anyway, such probabilities would be difficult to
incorporate into a dependability evaluation of the software
versions: if the proof were erroneous, then the true failure rate
will be confused to estimate.

There are also practical problems. Although computerized
approaches to formal verification progressed, there are still
strict limits to the size and complexity of problems that can be
addressed in this way. Finally, it has to be said that it is often
unreasonable to assume that the formal specification really
captures the more informal engineering requirements other
than the other software reliability assessment methods. If the
formal specification is wrong, a proof that the implementation
of the program conforms to the specification will not guarantee
that failures cannot occur.

V. SUMMARY AND CONCLUSIONS

This paper concentrated on the problem of assessing the
reliability of software before it is deployed in a safety-critical
system. Thus direct evaluation of reliability, using statistical
methods based upon (real or simulated) operational data will
allow quite modest claims to be made - putting it another way,
to make claims for ultra-high reliability this way would require
infeasibly large amounts of operational exposure of the
developed software. There are some indirect methods to
answer this problem.

Methods for evaluating reliability by combining evidence
from different sources are helpful, but much better
understanding is needed of the complex interdependencies
between different types of evidence before these approaches
can be trusted for safety-critical systems software reliability
assessment. The question of how much it is reasonable to trust
the judgment of experts leads to repay further study for these

methods. (See [Henrion and Fischhoff 1986] for an interesting
- and worrying - study showing the tendency for physicists,
both individually and as a community, to be overconfident in
their judgments.)

It should be noted that the results in this paper concern the
limits to the levels of reliability that can be evaluated prior to
the deployment of a system and not after the deployment of a
system. This do not find out what levels of reliability can be
achieved.

REFERENCES

[1] [Abdel-Ghaly, Chan et al. 1986] A.A. Abdel-Ghaly, P.Y. Chan and B.
Littlewood, “Evaluation of Competing Software Reliability Predictions,”
IEEE Trans. on Software Engineering, vol. 12, no. 9, pp.950-967, 1986.

[2] [Adams 1984] E.N. Adams, “Optimizing preventive maintenance of
software products,” IBM J. of Research and Development, vol. 28, no. 1,
pp.2-14, 1984.

[3] [Anderson, Barrett et al. 1985] T. Anderson, P.A. Barrett, D.N.
Halliwell and M.R. Moulding. “An Evaluation of Software Fault
Tolerance in a Practical System,” in Proc. 15th Int. Symp. on Fault-
Tolerant Computing (FTCS-15), pp. 140-145, Ann Arbor, Mich., 1985.

[4] [Brocklehurst and Littlewood 1992] S. Brocklehurst and B. Littlewood,
“New Ways to get Accurate Reliability Measures,” IEEE Software, vol.
9, no. 4, pp.34-42, 1992.

[5] [Dyer 1992] M. Dyer. The Cleanroom Approach to Quality Software
Development, Software Engineering Practice. New York, John Wiley
and Sons, 1992.

[6] [Eckhardt and Lee 1985] D.E. Eckhardt and L.D. Lee, “A Theoretical
Basis of Multi version Software Subject to Coincident Errors,” IEEE
Trans. on Software Engineering, vol. 11, pp.1511-1517, 1985.

[7] [Fenton, Littlewood et al. 1996] N. Fenton, B. Littlewood and M. Neil.
“Applying Bayesian belief networks in systems dependability
assessment,” in Proc. Safety Critical Systems Symposium, pp. 71-94,
Leeds, Springer-Verlag, 1996.

[8] [Henrion and Fischhoff 1986] M. Henrion and B. Fischhoff, “Assessing
uncertainty in physical constants,” Americal J. of Physics, vol. 54, no. 9,
pp.791-798, 1986.

