

106

International Journal of

Science and Engineering Investigations vol. 2, issue 12, January 2013

ISSN: 2251-8843

High Speed Modified Booth’s Multiplier for Signed and

Unsigned Numbers

Manish Chaudhary
1
, Mandeep Singh Narula

2

1
M.Tech (ECE), ITM University, Gurgaon, Haryana

2
Assistant Professor (Dept. of EECE), ITM University, Gurgaon, Haryana

(1chaudhary.manish89@gmail.com, 2msnarula@itmindia.edu)

Abstract- In this paper, we have designed a signed booth’s
multiplier as well as an unsigned booth’s multiplier for 4 bit, 8
bit and 16 bits performing multiplication on signed and
unsigned number. The implementation is done through Verilog
on xiling12.4 platform which provide diversity in calculating
the various parameters. The unsigned booth multiplication is
implemented by doing some modification in the booth’s
multiplication algorithm. In this paper we have tried to explain
the modification done in booth’s algorithm for signed and
unsigned numbers by dividing it in to five steps. The array
structures of signed and unsigned multipliers obtained from
RTL Synthesis are shown. Different parameters like Power,
CPU Usage, simulation etc have been compared for both
signed and unsigned multipliers.

Keywords-verilog; booth; signed multiplier; unsigned

multiplier

I. INTRODUCTION

Multiplication is an essential arithmetic operation and its
applications are dated several decades back in time. Earlier
ALU’s adders were used to perform the multiplication
originally. As the applications of Array multipliers were
introduced the clock rates increased as well as timing
constrains became austere. Ever since then methods to
implement multiplication are proposed which are more
sophisticated [1-4]. As known the use of multiplication
operation in digital computing and digital electronics is very
intense especially in the field of multimedia and digital signal
processing (DSP) applications [6]. There are mainly three
stages to perform multiplication: The first stage mainly consists
of generating the partial products which are generated through
an array of AND gates; Second stage consist of reducing the
partial products by the use of partial product reduction
schemes; and finally the product is obtained by adding the
partial products [5].

The multiplication can be performed on: 1) Signed
Numbers; 2) Unsigned Numbers. Signed multiplication a
binary number of either sign (two numbers whose sign may are
not necessarily positive) may be multiplied. But, in signed
multiplication the sign-extension for negative multiplicands is
not usable for negative multipliers and there are large numbers
of summands due to the large sequence of 1’s in multiplier.

Unsigned multiplication binary number (whose sign is
positive) is multiplied.

In the figure 1 we have seen the partial product array of
signed and unsigned binary multiplication and the difference in
their procedure of being multiplied and the calculation of the
final product. Figure1 (a) in this we have firstly produced the
eight partial products through on-bit multiplication, one for
each bit in multiplicand. Once, the partial products are obtained
then they are all added to get the final product.

Figure1 (b) Here, if one of the variable is signed integer,
then there would be sign-extension in the partial products
before summing. In this the array is modified by inverting
several of the products which support two’s compliment.(~p
denotes compliment). The one’s compliment sequence that is
been followed by the non-complimented bits are substituted to
avoid sign-extension in the final step. Here in part(b) of figure1
the last line the non complimented bits are being followed by
the complimented bits this is due to the subtraction of this term
as they all will start to negate out.

The Booth’s algorithm is powerful for signed number
multiplication (larger multiplier, lager number of multiplicands
to be added). It performs multiplication by performing
2’compliment and the regular shift and adds process. As due to
the extra partial bit at the least significant bit position there is
irregularity produced in the array. It is seen that in booth
technique if the operands are large (bit numbers) and there is a
long sequence of 1’s it is advantageous.

The booth’s algorithm for multiplication can be modified to
perform unsigned multiplication along with signed
multiplication. We have done some basic changes in the
algorithm to obtain the result of signed-unsigned multipliers.
After implementing the signed booth multiplier and unsigned
booth multiplier for 4, 8 and 16 bits binary numbers we have
compared their parameters (power usage, current leakage, CPU
usage, and memory usage) results with each other.

International Journal of Science and Engineering Investigations, Volume 2, Issue 12, January 2013 107

www.IJSEI.com Paper ID: 21213-15 ISSN: 2251-8843

II. BASIC TECHNOLOGY

A. Booth’s Multiplication Algorithm

The algorithm is based on checking the bits of multiplier Y

in two’s compliment, which also include the implicit bit below

the LSB,Y-1=0. Here we consider the an addition of

multiplicand to the product accumulator, considering

 and and multiplicand is subtracted from

the product accumulator. Hence, the final product is achieved.

B. Steps of Booth’s Algorithm implementation(Signed)

 Booth’s algorithm is executed by repeatedly adding one of

the two multiplicands and multipliers and then performing the

rightward arithmetic shift.

Consider e and f a multiplicand and multiplier respectively

these two values which are going to be multiplied and give

product. Let, the bits of e and f be represented by x and y.

1.) Firstly we arbitrate the values of two predetermined

A and S to obtain the product P. length of all these

numbers should be equal(x+y+1)

a.) A: Substitute the value of e(binary) in the

MSB(most significant bit) and append the

remaining bits with y+1 zeros.

b.) S: Substitute the value of -e(two’s compliment

notation) in the MSB (most significant bit) and

append the remaining bits with y+1 zeros.

c.) P: Substitute the MSB with x bits of zeros. Then

to the right of this insert the value of f and

append the LSB(least significant bit) bits with

zero.

2.) Now, consider the two least significant bits of P.

a.) If the two least significant bits are 01, then the

values of P becomes P+A. ignoring overflow

b.) If the two least significant bits are 10, then the

values of P becomes P+S. ignoring overflow

c.) If the two least significant bits are 00, then the

values of P is used as it is.

d.) If the two least significant bits are 11, then the

values of P is used as it is.

3.) After the completion of the 2
nd

 step we will do the

Arithmetic shift by single place towards the right. Let

the new value be equal to P now.

4.) For y number of times repeat the 2
nd

 and 3
rd

 step.

5.) To obtain the final product result of e and f we have

to drop the least significant bit from P.

 p0[7] p0[6] p0[5] p0[4] p0[3] p0[2] p0[1] p0[0]

 + p1[7] p1[6] p1[5] p1[4] p1[3] p1[2] p1[1] p1[0] 0

 + p2[7] p2[6] p2[5] p2[4] p2[3] p2[2] p2[1] p2[0] 0 0

 + p3[7] p3[6] p3 [5] p3[4] p3[3] p3[2] p3[1] p3[0] 0 0 0

 + p4[7] p4[6] p4[5] p4[4] p4[3] p4[2] p4[1] p4[0] 0 0 0 0

 + p5[7] p5[6] p5[5] p5[4] p5[3] p5[2] p5[1] p5[0] 0 0 0 0 0

 + p6[7] p6[6] p6[5] p6[4] p6[3] p6[2] p6[1] p6[0] 0 0 0 0 0 0

+ p7[7] p7[6] p7[5] p7[4] p7[3] p7[2] p7[1] p7[0] 0 0 0 0 0 0 0

p[15] p[14] p[13] p[12] p[11] p[10] p[9] p[8] p[7] p[6] p[5] p[4] p[3] p[2] p[1] p[0]

(a)

 1 ~`p0[7] p0[6] p0[5] p0[4] p0[3] p0[2] p0[1] p0[0]

 ~ p1[7]+p1[6]+p1[5]+p1[4]+p1[3]+p1[2]+p1[1]+p1[0] 0

 ~p2[7]+p2[6]+p2[5]+p2[4]+p2[3]+p2[2]+p2[1]+p2[0] 0 0

 ~ p3[7]+p3[6]+p3[5]+p3[4]+p3[3]+p3[2]+p3[1]+p3[0] 0 0 0

 ~ p4[7]+p4[6]+p4[5]+p4[4]+p4[3]+p4[2]+p4[1]+p4[0] 0 0 0 0

 ~p5[7]+p5[6]+p5[5]+p5[4]+p5[3]+p5[2]+p5[1]+p5[0] 0 0 0 0 0

 ~p6[7]+p6[6]+p6[5]+p6[4]+p6[3]+p6[2]+p6[1]+p6[0] 0 0 0 0 0 0

1+p7[7]~p7[6]~p7[5]~p7[4]~p7[3]~p7[2]~p7[1]~p7[0] 0 0 0 0 0 0 0

p[15] p[14] p[13] p[12] p[11] p[10] p[9] p[8] p[7] p[6] p[5] p[4] p[3] p[2] p[1] p[0]

(b)

Figure1: Partial Product array for (a) unsigned (b) signed multiplication

Example1:Signed Booth

Considering e=0010(2) , -e=1101 and f=0011(3).

x=4;y=4

A:0010 0000 0

S=1101 0000 0

P=0000 0011 0

Performing the 2
nd

 step and 3
rd

 step for y times where y=4.

1. P= 0000 0011 0. The last two bits are 10

P=P+S, 0000 0011 0 + 1101 0000 0=1101 0011 0

Arithmetic shift .P=1110 1001 1.

2. P=1110 1001 1. The last two bits are 11.

Arithmetic shift. P=1111 0100 1

3. P=1111 0100 1. The last two bits are 01

P=P+A, 1111 0100 1+0010 0000 0=0001 0100 1

Arithmetic shift .P=0000 1010 0

4. P=0000 1010 0. The last two bits are 00

Arithmetic shift.P=0000 0101 0

To obtain the final result drop the least significant bit

from P, hence we get

P= 0000 0101=6

International Journal of Science and Engineering Investigations, Volume 2, Issue 12, January 2013 108

www.IJSEI.com Paper ID: 21213-15 ISSN: 2251-8843

C. Steps of Booth’s Algorithm i*mplementation(Unsigned)

The booth’s algorithm for unsigned multiplication is

almost same but the only difference is the along with

repeatedly adding the two multiplicands and multipliers they

are also repeatedly subtractedand then the airthmetic shift is

performed. Secondly two’s compliment is not done.

Consider e and f a multiplicand and multiplier respectively

these two values which are going to be multiplied and give

product. Let, the bits of e and f be represented by x and y.

1.) Firstly we arbitrate the values of two predetermined

A and S to obtain the product P. length of all these

numbers should be equal(x+y+1)

a.) A: Substitute the value of e(binary) in the

MSB(most significant bit) and append the

remaining bits with y+1 zeros.

b.) S: Substitute the value of e in the MSB (most

significant bit) and append the remaining bits

with y+1 zeros.

c.) P: Substitute the MSB with x bits of zeros. Then

to the right of this insert the value of f and

append the LSB (least significant bit) bits with

zero.

2.) Now, consider the two least significant bits of P.

a.) If the two least significant bits are 01, then the

values of P becomes P+A. ignoring overflow

b.) If the two least significant bits are 10, then the

values of P becomes P-S. ignoring overflow

c.) If the two least significant bits are 00, then the

values of P is used as it is.

d.) If the two least significant bits are 11, then the

values of P is used as it is.

3.) After the completion of the 2
nd

 step we will do the

Arithmetic shift by single place towards the right. Let

the new value be equal to P now.

4.) For y number of times repeat the 2
nd

 and 3
rd

 step.

5.) To obtain the final product result of e and f we have

to drop the least significant bit from P.

III. RESULTS

In this section we have written and simulated the Verilog
code on xilings of the booth’s multipliers (signed and
unsigned) for 4-bit and 8-bit and have verified it through a test
bench, which has generated a waveform representing the
output function.

The name of simulator is ISim. In this simulator we

observe test benches. In test bench we get waveforms

representation of the given parameters and response of the

system according to given parameters.

Figure 2: RTL Booth's 8 Bit signed

Example2 Unsigned

Considering e=0010(2) , -e=1101 and f=0011(3).

x=4;y=4

A:0010 0000 0

P=0000 0011 0

Performing the 2
nd

 step and 3
rd

 step for y times where y=4.

5. P= 0000 0011 0. The last two bits are 10

P=P-A, 0000 0011 0 + 0010 0000 0=111 010

Arithmetic shift .P=111 101.

6. P=11110 1. The last two bits are 01.

 P=P+A=111 101 + 0010 0000 0= 000101000

Arithmetic shift.P=0000 1010 0

7. P=0000 1010 0. The last two bits are 00

Arithmetic shift .P=0000 0101 0

To obtain the final result drop the least significant bit

from P, hence we get

P= 0000 0101=6

International Journal of Science and Engineering Investigations, Volume 2, Issue 12, January 2013 109

www.IJSEI.com Paper ID: 21213-15 ISSN: 2251-8843

Figure 3: Array Structure 8-Bit signed

Figure3 shows the array structure and arrangement of the

8-bit signed booth multiplier.

Figure 4: Waveform Of The Product (8-bit signed)

Figure4 shows the output waveform. Here, the input given

is 8 bit value a = 8'b11111110; b = 8'b11111110. After the

executing the test bench according to the verilog code the

output waveform is achieved which is c=0000000000000100

Figure 5: RTL Booth’s 4-Bit Signed

Figure 6:Array Structure Of 4-bit Signed

Figure6 is the representation of the array structure

consisting of adders and multipliexers.

International Journal of Science and Engineering Investigations, Volume 2, Issue 12, January 2013 110

www.IJSEI.com Paper ID: 21213-15 ISSN: 2251-8843

Figure 7: Waveform of The Product (4-bit signed)

Figure7 shows the output waveform. Here, the input given

is 8 bit value a = 4'b1101; b = 4'b1110;. After the executing

the test bench according to the Verilog code the output

waveform is achieved which is c=00000110.

Figure 8: RTL Booth’s 8-bit Unsigned

Figure 9: Array Structure of 8-Bit Unsigned

Figure9 shows the array structure and arrangement of the

8-bit unsigned booth multiplier.

Figure 10:Waveform Of The Product(8-bit unsigned)

Figure10 shows the output waveform. Here, the input

given is 8 bit value a = 8'b00000111; b = 8'b00000101. After

International Journal of Science and Engineering Investigations, Volume 2, Issue 12, January 2013 111

www.IJSEI.com Paper ID: 21213-15 ISSN: 2251-8843

the executing the test bench according to the verilog code the

output waveform is achieved which is c=0000000000100011.

Figure 11: RTL Booth’s 4-bit Unsigned

Figure 12: Array Structure of 4-Bit Unsigned

Figure12 shows the array structure and arrangement of the

4-bit unsigned booth multiplier.

Figure13: Waveform of The Product (4-bit unsigned)

Figure13 shows the output waveform. Here, the input

given is 4 bit value a = 4'b0111;b = 4'b0101;. After the

executing the test bench according to the Verilog code the

output waveform is achieved which is c=00100011

Figure 14: RTL Booth's 16-bit unsigned

International Journal of Science and Engineering Investigations, Volume 2, Issue 12, January 2013 112

www.IJSEI.com Paper ID: 21213-15 ISSN: 2251-8843

Figure 15: Array Structure Of 16-bit Unsigned

Figure15 shows the array structure and arrangement of the

16-bit unsigned booth multiplier.

Figure 16: Waveform of The Product (16-bit unsigned)

Figure16 shows the output waveform. Here, the input

given is 16bit

valuea=16'b0000000000000111;b=16'b000000000000010

1; After the executing the test bench according to the verilog

code the output waveform is achieved which is

c=00000000000000000000000000100011

TABLE 1: COMPARISON OF VARIOUS PARAMETERS

Parameter
4-bit

Signed

4-bit

Unsign

ed

8-bit

Signed

8-bit

Unsign

ed

16-bit

Unsigned

Leakage

Power

35.75

mW

35.57

mW

35.57

mW

35.57

mW
41.57 mW

Dynamic

Power

1.30

mW

1.30

mW

2.09

mW

1.66

mW
2.12 mW

Total Power
36.87

mW

36.87

mW

37.66

mW

37.23

mW
43.69 mW

Inputs/Outp

uts used
18 18 34 34 66

Dynamic

Current

1.09

mA

1.09

mA

1.74

mA

1.38

mA
1.77 mA

Quiescent

Current

13.14

mA

13.14

mA

13.15

mA

13.14

mA
13.55 mA

Total

Current

14.23

mA

14.23

mA

14.88

mA

14.53

mA
14.91 mA

From the above table of comparison we can see the

difference in the various parameters of the multiplier of 4,8,16

bits. The 16-bit unsigned multiplier consumes the maximum

power of 37.69 mW as compared to others the minimum

power consumption is done by 4-bit singed and unsigned

which is 36.87 mW. Also we can see the maximum current is

consumed by the 16-bit unsigned multiplier 14.91 mA as

compared to others the minimum current consumption is done

by 4-bit singed and unsigned which is 14.23 ma.

IV. CONCLUSION

Modified Booth’s multiplier has been successfully

implemented for both signed and unsigned numbers using

Xilinx 12.4 platform. Result obtained from simulation

waveforms matches exactly with the desired value for 4 bit, 8

bit and 16 bit signed and unsigned multiplier. Different

parameters like leakage power, dynamic power, total power,

I/O pads used, dynamic and quiescent current etc have been

compared for different bits. As expected, total power

dissipated for 16 bit multiplier exceeds power for 8 bit

multiplier. However the difference is not large.

International Journal of Science and Engineering Investigations, Volume 2, Issue 12, January 2013 113

www.IJSEI.com Paper ID: 21213-15 ISSN: 2251-8843

REFERENCES

[1] W. C. Yeh and C. W. Jen, “High Speed Booth encoded Parallel
Multiplier Design,” IEEE transactions on computers, vol. 49, no. 7, pp.
692-701, July 2000.

[2] Shiann-Rong Kuang, Jiun-Ping Wang, and Cang-Yuan Guo, “Modified
Booth multipliers with a Regular Partial Product Array,” IEEE
Transactions on circuits and systems-II, vol 56, No 5, May 2009.

[3] Li-Rong Wang, Shyh-Jye Jou and Chung-Len Lee, “A well-tructured
Modified Booth Multiplier Design” 978-1-4244-1617-2/08/$25.00
©2008 IEEE.

[4] Soojin Kim and Kyeongsoon Cho “Design of High-speed Modified
Booth Multipliers Operating at GHz Ranges” World Academy of
Science, Engineering and Technology 61 2010.

[5] Shiann-Rong Kuang, Member, IEEE, Jiun-Ping Wang, and Cang-Yuan
Guo” Modified Booth Multipliers With a Regular Partial Product Array”
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II:
EXPRESS BRIEFS, VOL. 56, NO. 5, MAY 2009 1549-7747

[6] Ravindra P Rajput and M. N Shanmukha Swamy” High speed Modified
Booth Encoder multiplier for signed and unsigned numbers” , 2012 14th
International Conference on Modelling and Simulation 978-0-7695-
4682-7/12 © 2012 IEEE.

Manish Chaudhary born in Maharashtra on 25

september 1989. He completed the B.Tech in the

field of Electronics and Communications from

Greater Noida Institute of Technology (G.B.T.U,

University) from Greater Noida in the year of

2011. Now, pursuing Master's Degree (M.Tech) in

the field of Electronics and Communications from ITM University

Gurgaon, Haryana.

Mandeep Singh Narula has completed M.Tech

in Microelectronics and VLSI from IIT Kharagpur

in the year 2008. His areas of interest are Low

Power VLSI, RTL Verification, and Analog

VLSI. He is working as Assistant Professor in

ECE Department at ITM University, Gurgaon. He

has over two years of experience in VLSI Industry

and 3 years of teaching experience.

