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Abstract- The paper presents an evaluation of the damping 
prediction of unidirectional composite using the finite element 
method, which takes account the effect of the beam length. 
This study follows the evolution of the damping when the 
length increases by using modal analysis with different 
application of load rate at the structure. An analytical method is 
used to solve the equation of free vibrations. The study shows 
the decrease in frequency for different rates of loading, hence 
the loss of stiffness for all beams studied. The calculation of 
loss factors of modal energies for the first three bending modes 
of the structure is done by evaluating the ratio of the strain 
energies of beam for damaged and undamaged cases. The 
structural damping of the different beams is evaluated from 
these energies.  
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I.  INTRODUCTION 

Damping is a measure of the energy dissipation in any 
vibrating structure. The progress has been achieved in the 
analysis and measurement of dynamic properties of composite 
materials. The initial works on the damping analysis of fibre 
composite materials were reviewed extensively in review paper 
by Berthelot, Gibson and Plunkett [1-2] and Gibson and 
Wilson [3]. A damping process has been developed initially by 
Adams and Bacon [4] who sees that the energy dissipation can 
be described as separable energy dissipations associated to the 
individual stress components. This analysis was refined in later 
paper of Ni and Adams [5]. The damping of orthotropic beams 
is considered as function of material orientation and the papers 
also consider cross-ply laminates and angle-ply laminates, as 
well as more general types of symmetric laminates.  

The damping concept of Adams and Bacon was also 
applied by Adams and Maheri [6] to the investigation of angle-
ply laminates made of unidirectional glass fibre or carbon 
layers. The finite element analysis has been used by Lin et al. 
[7] and Maheri and Adams [8] to evaluate the damping 
properties of free-free fibre reinforced plates. These analyses 
were extended to a total of five damping parameters, including 
the two transverse shear damping parameters. More recently 
the analysis of Adams and Bacon was applied by Yim [9] and 

Yim and Jang [10] to different types of laminates, then 
extended by Yim and Gillespie [11] including the transverse 
shear effect in the case of 0° and 90° unidirectional laminates. 
For thin laminate structures the transverse shear effects can be 
neglected and the structure behavior can be analyzed using the 
classical laminate theory. 

The natural frequencies and mode shapes of rectangular 
plates are well described using the Ritz method introduced by 
Young [12] in the case of homogeneous plates. The Ritz 
method was applied by Berthelot and Safrani [13] to describe 
the damping properties of unidirectional plates. The analysis 
was extended to the damping analysis of laminates [14]. This 
paper presents an evaluation of the damping as function of the 
length using finite element method for a material with stacking 
sequence U.   

 

II. COMPOSITE MATERIAL 

The laminates were prepared by hand lay-up process from 
SR1500 epoxy resin with SD2505 hardener and unidirectional 
E-glass fibre fabrics of weight 300g/m2 . The evaluation of 
damping was performed on beams of different lengths: 
140,160, 180, 200, 210, 220, 230 and 240 mm. Beams had a 
nominal width of 20 mm, were cured at room temperature with 
a pressure of 30 kPa using vacuum moulding process, and then 
post-cured for 8h at 80°C in an oven. Beams had a nominal 
thickness of 2 mm with a volume fraction of fibres equal to 
0.40. The mechanical modulus of elasticity of the materials 
was measured in static tensile. The results are reported in table 
1: 

 

TABLE I.  MECHANICAL PROPERTIES 

Material 
Stacking 

sequences 

Young’s 

modulus 

Max load at 

fracture  (KN) 

U [(O)]8 21.08 35.165 

 

The experimental investigation was conducted using tensile 
cyclic tests for different laminates studied. The applied load 
ratio is 10 % of maximum load failure. Fig.1 shows the results 
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obtained for the Young’s modulus reduction as a function of 
cycle number.  

 

 

Figure 1.  Stiffness reduction of unidirectional composite as a function of 
cycle number  

 

III. VALUES OF NATURAL FREQUENCIES 

The differential equation of free motion for an undamped 
beam may be written [15] as: 
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Where ρs is the mass per unit area and ks is the stiffness per 
unit area given by: 
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Eq. (1) of transverse vibrations may be rewritten in the 
form: 
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Introducing the natural angular frequency of the undamped 
beam: 
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The angular frequency of mode (i) is given by: 

0
2
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The coefficient λi are reported in table II. 

 

TABLE II.  VALUES OF THE COEFFICIENTS OF THE CLAMPED-FREE 

BEAM FUNCTION  

i 1 2 3 4 5 6 7 

λi 1.8751 4.6941 7.8548 10.996 14.137 17.279 20.420 

 

IV. FINITE ELEMENT IN THE DYNAMIC ANALYSIS  

The flexural vibrations of beams are analyzed by the finite 
element method, using the stiffness matrix and mass matrix of 
beam element with two degrees of freedom per node (Fig.2): 

 

 

 

Figure 2.  Element beam  

Where:     

E: the Young modulus. 

I: the moment of inertia of the beam. 

L: the length of the beam. 

S: the section of the beam. 

ρ: the density. 
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 The global matrix of mass and stiffness are obtained by 
using assembly method: 
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Where:  

 B is the Boolean matrix. 

 Kdes and Mdes are unassembled matrix, they contain 
only elementary matrix of mass and stiffness. 
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 The equation of motion [20]: 

    0tkqtqm 


                                                            (11) 

The equation (11) can be written in matrix form: 
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With q is the vector of degrees of freedom. We have two 
cases where the structure is undamaged [K] = [KG] and 
damaged [K] = [KG

D
] which takes into account the decrease in 

the rigidity of the structure when the loading rates change [17]. 

The general solution of equation (12) is: 

    ti
0 eqq                                                              (13) 

By substituting the equation (13) in equation (12), we have: 
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Then, the determinant must be zero: 
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There are many methods to calculate the eigenvalues; the 
most of these methods are to write the equation (11) as follows: 
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Where [H] is a positive and symmetric matrix, it is clear 
that if we write directly the equation (14) as: 
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Where [K]
-1

 is the inverse of the matrix [K], the symmetry 
property is not always preserved. Therefore, it is necessary to 
write the matrix [K] using the Cholesky decomposition: 
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[L]
T
 is the transpose of the matrix [L] and [L] is a lower 

triangular matrix. 

The equation (14) is written: 
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By writing equation (19) as similar form as equation (14): 
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V. EVALUATION OF THE BEAM DAMPING AS FUNCTION 

OF LENGTHS 

The modal strain energy of the beam for the undamaged 
case [17-18] is given by: 
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The modal strain energy for damaged case is given by: 
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With [Øn], [ØnD] are the eigenvectors of displacement for 
undamaged and damage case. 

The loss factor coefficient [18] for different stages of 
damage (different loading rates) is given by: 
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With Un, UnD are the modal strain energies for undamaged 
and damage case. 

 

VI. RESULTS AND DISCUSSIONS 

The decrease in frequency of different loading rates shows 
the loss of stiffness for the height lengths of beams studied 
which constitute the method to follow the progression of 
fatigue damage of the composites [16, 19].  

 

TABLE III.  FREQUENCIES OBTAINED BY THE  MODEL AND ANALYTICAL 

METHOD  

Length 

of 

beam 

(m) 

Analytical 

Response 

(Hz) 

Modeling frequencies with Different 

loading rates 

 (Hz) 

0 % 50 % 90 % 

L1=0.14 

38.453 36.684 36.592 36.5 

346.08 352.12 351.24 350.36 

961.33 933.16 930.83 928.49 

L2=0.16 

29.441 28.086 28.016 27.945 

264.97 269.59 268.92 268.24 

736.02 714.45 712.67 710.87 

L3=0.18 

23.262 22.192 22.136 22.08 

209.36 213.01 212.48 211.95 

581.55 564.51 563.09 561.68 

L4=0.20 

18.842 17.975 17.93 17.885 

169.58 172.54 172.11 171.68 

471.05 457.25 456.11 454.96 
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The programming of this resolution method was performed 
under the Matlab software. The frequencies obtained by the 
model and the analytical response for different lengths studied 
are reported in tables III and IV.  

 

TABLE IV.  FREQUENCIES OBTAINED BY THE  MODEL AND ANALYTICAL 

METHOD  

Length 

of 

beam 

(m) 

Analytical 

Response 

(Hz) 

Modeling frequencies with Different 

loading rates 

 (Hz) 

0 % 50 % 90 % 

L5=0.21 

17.09 16.304 16.263 16.222 

153.81 156.5 156.11 155.72 

427.26 414.74 413.7 412.66 

L6=0.22 

15.572 14.855 14.818 14.781 

140.15 142.6 142.24 141.88 

384.3 377.89 376.95 303.47 

L7=0.23 

14.247 13.592 13.558 13.524 

128.23 130.47 130.14 129.81 

356.18 345.75 344.88 344.01 

L8=0.24 

13.085 12.483 12.451 12.42 

117.76 119.82 119.52 119.22 

327.70 317.53 316.74 315.94 

 

Figs.3-4 report the results deduced for the damping by 
finite element analysis for the first three modes. The evaluation 
of laminate damping by modeling takes account of the 
variation of the loss factor η with lengths. We have two cases:  

 When the loading rate is 50 %: The Figure 3 shows an 
increase in damping (0.5025 %) when the length 
increases except for L4; we observe a slight decrease 
in damping (0.497 %). 

 When the loading rate is 90 %: The Figure 4 shows an 
increase in damping (1.003 %) when the length 
increases except for L7; we observe a slight decrease 
in damping (0.997 %). 

 

 

Figure 3.  Modelling results obtained for the damping as function of the 

frequency for U material in the case:  load 50 %.   

 

 

Figure 4.  Modelling results obtained for the damping as function of the 
frequency for U material in the case:  load 90 %.   

 

VII. CONCLUSIONS 

This study presents an evaluation of the damping of 
different lengths of composite material was presented based on 
a finite element analysis of the vibrations of a composite 
structure.  

The decrease in frequency of different loading rates shows 
the loss of stiffness for the height lengths of beams studied 
which constitute the method to follow the progression of 
fatigue damage of the composites. The results deduced from 
the damping by finite element analysis for the first three modes 
that the evaluation of laminate damping takes account the 
variation of the loss factor η with lengths. The loss factors of 
the composite materials can be deduced by applying modeling 
to the flexural vibrations of free-clamped beams. 
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