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Abstract- This paper is concerned with an analog computing 
based on Cellular Neural Network (CNN) systems to develop 
an approximate solution of Burgers’ equation. The Reaction-
diffusion CNN (RD-CNN) model is explained, which is an 
important class of partial differential equations (PDEs). The 
accuracy of the proposed method is demonstrated by three test 
problems. The results are presented to show the efficiency of 
the method and compared with the exact solution to test the 
accuracy. The numerical results are presented graphically. 
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I. INTRODUCTION  

Consider the initial boundary value problem of Burgers’ 
equation of the form 

 

0 xxxt uvuuu  , bxa              (1) 

 

 
Which is the one dimensional quasilinear parabolic partial 

differential equation where v, are positive parameters and 

coefficient of the kinematics viscosity of the fluid and  the 
respectively with initial and boundary conditions: 

 

)()0,( xfxu   

,),( 1gtau  2),( gtbu 
 

,0t
           (2) 

 

The study of Burgers’ equation is important since it arises 
in the approximate theory of flow through a shock wave 
propagating in a viscous fluid and in the modeling of 
turbulence [1]. The exact solutions of Burgers’ equation have 
been surveyed by Benton and Platzman [2]. In many cases 
these solutions involve infinite series which may converge very 
slowly or for small values of the viscosity coefficients. Several 
studies in the literature have been considered to compute 
numerical solutions of Burgers’ equation [3-7]. 

There are many researchers have introduced the methods 
for solving PDEs using some of models of CNN such as, 

Chedjou1 et al [11] presented solving ordinary differential 
equations (ODEs) and PDEs using State controlled CNN  
(SC-CNN). A learning method based on CNN is introduced by 
Aein and Talebi [12]. Hadad and Piroozmand [13] explained 
an implementation of the CNN paradigm on very large scale 
integrated circuit (VLSI) to solve PDEs. Corinto et al [14] 
considered the discrete CNN paradigm to solve PDEs with 
applications for image multi-scale analysis. N. Zoltan et al [15] 
Presented an emulation of the CNN paradigm on digital 
platforms to solve PDEs.  

The idea of fixed-point is introduced which is being 
exploited to decrease the computing precision and increasing 
computing speed Fausto Sargeni [16]. They focused on the 
CNN-based analog computing paradigm to solve PDEs. The 
paradigm is shown to be flexible in setting boundary conditions 
and selecting discretization methodologies as well.  

The state of the art presents the CNN paradigm as being an 
attractive alternative solution to conventional numerical 
computation method [9, 10, 12-17]. It has been intensively 
show CNN is an analog computing paradigm which performs 
ultra-fast calculations and provides accurate results [9, 10]. 
Interestingly, a speed-up of the analog computing process  
is possible by an implementation on reprogrammable  
computing [11]. 

In this paper, we consider the concept of RD-CNN model 
which an important class of partial differential equations PDEs 
to develop a numerical method for obtaining approximate 
solution for (1). We explain the possibility of deriving 
appropriate RD-CNN model templates to solve (1). Using our 
approach, this equation is mapped to  
RD-CNN model array in order to facilitate templates 
calculation. On the other hand (1) is transformed into ODEs 
having array structures. This transformation is achieved by 
applying the method of finite difference method. 

The paper is organized as follows: In section 2, the concept 
of CNN Paradigm and the Reaction-diffusion CNN model are 
explained. In section 3, an approximate solution is obtained by 
applying the Reaction-diffusion CNN model using initial and 
boundary conditions of (1). Finally, three test problems are 
presented to demonstrate the accuracy and efficiency of the 
method. 
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II. THE CNN PARADIGM AND (RD-CNN) MODEL 

A. Cellular Neural Network 

CNN was first introduced as an acronym for Cellular 
Neural Network by Chua and Yang [9, 10]. It is an information 
or signal processing system composed of a large number of 
simple analog processing elements, called cells which are 
locally interconnected and perform parallel processing in order 
to solve a given computational task. The key concept 
distinguishes a CNN from other neural networks is that, the 
interconnections among cells are local. This is indeed a great 
advantage which makes CNN models tailor-made for 
monolithic implementation in currently available planar 
technologies [8].  

Definition (1): A CNN is any spatial arrangement of 
locally-coupled cells, where each cell is a dynamical system 
which has an input, an output and a state evolving according to 
some prescribed dynamical laws [8].  

The resulting network is defined mathematically by four 
specifications: 

1. Cell dynamics, 

2. Synaptic law, 

3. Boundary conditions, 

4. Initial conditions. 

 
A one-dimensional (1-D) and a two-dimensional (2-D) 

CNN architecture spatial arrangement of locally-coupled of a 
row of N cells and an N x M array of cells, respectively are 
show in Fig. 1(a) and Fig. 1(b). For a continuous time CNN, 
cells usually consist of time-invariant circuit elements similar 
as Fig. 2. The cells can be any dynamical system. Although 
Def. 1 includes discrete-time CNNs. A 3-D CNN can be built 
up by cascading 2-D CNN layers. 

A circuit cell for the Chua-Yang model is explained in Fig. 

2. The node voltages jyijxi ,, , and jui, are called the state, 

output and input of the cell respectively. C is a linear 

capacitor, R  is a linear resistor, jiE ,  is an independent 

voltage source, zI  is an independent current source, )( , jxif 
is a nonlinear voltage controlled voltage source, yI , uI  and 

s

jiI , are linear voltage controlled current sources with 

characteristics Uijuyijy bIaI  0,00,0 ,  . 

 

Figure 1.   Cells which are arranged in (a) 1-D and (b) 2-D CNN architecture 

 

 

Figure 2.  CNN cell defined as a nonlinear first order circuit 

 

There are a lot of models of state equations of CNN which 
appear as follows: 

1) Chua-Yang CNN model 

2) SC-CNN model 

3) Full-range CNN model 

4) RD-CNN model 

5) Generalized CNN models 

a. A generalized CNN model: nonlinear and delay CNNs 

b. A generalized CNN based on Chua's circuit 

We will explain in details RD-CNN model which is an 
important class of PDEs 

B. RD-CNN model 

RD-CNN is an important class of PDEs is reaction 
diffusion CNN model which consider PDEs as follows:  
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In order to find an approximate solution to the PDEs a 

spatial discretization can be applied. The PDEs are transformed 
into a system of ODES resulting into the state equations of a 
CNN with an appropriate synaptic law. 

The discretization in space is typically made in equidistant 

steps h  in both )( hyx  on the MN  grid. So 

),,( tyxu is mapped into a CNN layer such that state variable 

)(txij of a CNN cell ijC  is associated with ),,( tjhihu  

where  Ni ,...,2,1 and  Mj ,...,2,1 .Based on the 

Taylor-series expansion of ),,( tyxu the Laplacian operator 

is approximated by 

)],(4),(
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Hence a cell of a reaction-diffusion CNN is governed by 

the following state equation 

 
s

ijijijij IxAxhx  0,0
ˆ)(             (6) 

where ,m

ijx  ms

ijI  and mmI
h

A 
20,0

4ˆ .  

The synaptic law of the model is given by 

 





jiSlk

lkjlik

s

ij xAI
,,

,,
ˆ              (7) 

The model has been used as a paradigm for generating auto 
waves, spiral waves, scroll waves and spatial-temporal chaos. 

 

III. SOLUTION OF NONLINEAR PDES USING RD-CNN 

MODEL 

CNN can be used to solve PDEs. Four main variables 
(discrete or continuous) are considered when solving PDEs 
which time, value of the state variable, interaction of 
parameters and space. The overall approach is based on 
transform PDEs into ODEs and arranges these ODEs into a 
form which can be identified with the CNN models and 
calculates the templates. 

We explain the basic steps for solving one dimensional 
non-linear Burgers’ equation with boundary condition in (1) 
using CNN. 

1.  Determine the dimension and model of CNN systems  
to develop approximation to (1). Using 1-D CNN with RD-

CNN model with state template Â and nonlinear feedback 

template ),( ki

n xxA and the threshold z  with boundary 

condition to solving (1).  

Hence, a cell of RD-CNN is governed by the following 

state equation 

 
i

M

ij

ji

n

jijjiijiii zxxAxAxAxhx 







 



),(ˆˆ)( ,,,
       

1,...,2,1  Ni , Mj ,...,2,1              (8)
 

Fixed (Dirichlet) Boundary Condition 

 
210 , ExEx N    where 21, EE  

2.   The spatial discretization using finite difference method 
(FDM) is performed in order to transform (1) into sets of ODEs 
and arrange them into a suitable form of CNN paradigm using 
(Explicit Scheme of FDM)   
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   where Nabh /)(   

 

 

Equation (1) can be written in the following form  

 

    







 








 
 

h

uu
vu

h

uuu
u

j

i

j

i

i

j

i

j

i

j

i

i
2

2 11

2

11         (10) 

 

 
   j

i

j

ii

j

i

j

i

j

ii uuu
h

v
uuu

h
u 11112 2

2  


          (11) 

          Let  
2h

l


 ,    
h

v
r

2
   then 
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j
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j
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The spatial domain is built from a number of grid-points 

localized by position ix , the index i  being an integer. 

Therefore (13) clearly shows that the analog computing of 
PDEs is possible by transforming them into ODEs which are 
expressed in the form of (13). This form is a set of coupled first 
order ODEs, the number of equations being fixed by the index 

i  . Equation (13) in the form of i  first ODEs which are further 

identified with RD-CNN model in (8). 

 
3. The number of differential equations defines the 

maximum index of the CNN processor array. 

 
4.  The differential equations are arranged in the similar 

form as RD-CNN model state equations (8) which take the 
form. 

 
      jjjjjj uuurluluuluu 02102111 )21(   
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With the boundary condition  

      
     

22110 ),(,),( EgtbuuEgtauu j

N

j   

 
5. Compare the coefficients of variables at differential 

equations (14) with RD-CNN model state equations (8) to 
obtain the template values for each CNN processor. 
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We can set the RD-CNN model state equations (8) which 

use to solve (1) in the matrix form 
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We can set (16) in the system form 

 )(ˆˆ
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 )(ˆˆ
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1. Use the template values to implement the RD-CNN 

processor in Matlab using (programming /Simulink). 

 
 We must determine the solver function in Matlab which 

appropriate with the CNN system and give the high accuracy to 
the approximate solution of (1). 

There is a lot of solver function in Matlab which used to 
solve the initial and boundary ordinary differential equation 
problems but we used to solve (1) ode45 as a basic solver.  

 

IV. APPLICATION AND NUMERICAL RESULT 

We now obtain numerical solutions of Burgers’ equation 
for the 1

st
 and 2

nd
 test problems. The versatility and the 

accuracy of the proposed method is measured using  
the

2L  and 
L  error norms for the 1

st
 and 2

nd
 test problems to 

make comparison with exact solution and some published 
methods [18]. 

 

1,...,2,1,)(max 
 NjuuuuL n
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Where 
ju  is the exact solution and  

n

jNu )(  is the 

approximate solution at step j . 

A. Test Problem (1) 

Shock-like solution of the Burgers equation (1) is studied 

through the analytical solution [19]  
 

)
4

exp(1
),(

2

0 vt
xtt

t
x

txU



,  10,1  xt ,        (20) 

where )
8

1
exp(0

v
t  . This solution represents the 

propagation of the shocks which becomes slightly smoother as 
time progresses. Initial condition which is taken when 1t  in 

(20) is used. We have run the method for boundary  
conditions and choose the result with selection of 
 0),( taU and 0),( tbU . With Parameters 005.0h , 

005.0,01.0  vt and computation is done up to time 

1.3t   are selected to comparison the result with [18]. Use 

various values of v  and computation is done up to time 7t
over the problem domain [0, 1]. 

The results of the algorithms together with exact solutions 
are documented in Table I, II. RD-CNN model produces 

almost the same results in terms of the 2L  and L  error 

norms. The results of the present simulation exhibited the same 
results with QBGM , CBGM [18] and quadratic Galerkin 
method [20] as compared in Table I. We observe that, RD-
CNN model produced a little higher error than alternative 
approach and good behavior of the result up to 7t . The 

numerical solution is visualized at various times in Fig.3, 4. 
Error between the analytical and numerical solutions is graphed 
in Fig. 5. 

TABLE I.  COMPARISON OF RESULT AT DIFFERENT TIMES FOR 

01.0,005.0,005.0  thv
 

t 
2L

 
QBGM CBGM [29] RD – CNN 

1.7 3.51E-04 3.51E-04 8.57E-04 1.49E-08 

2.4 2.45E-04 2.44E-04 4.23E-04 7.50E-09 

3.1 6.33E-04 6.33E-04 2.35E-04 3.28E-07 

3.5 - - - 8.76E-06 

4 - - - 1.18E-04 

4.5 - - - 3.61E-04 

5 - - - 5.10E-04 

6 - - - 5.41E-04 

7 - - - 4.91E-04 
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t L  

QBGM CBGM [29] RD – CNN 

1.7 1.21E-03 1.21E-03 2.58E-03 4.72E-04 

2.4 8.02E-04 8.02E-04 6.88E-04 3.02E-04 

3.1 4.79E-03 4.79E-03 1.24E-03 4.11E-03 

3.5 - - - 2.07E-02 

4 - - - 7.50E-02 

4.5 - - - 1.31E-01 

5 - - - 1.53E-01 

6 - - - 1.47E-01 

7 - - - 1.31E-01 

 

 

TABLE II.  COMPARISON OF RESULT AT DIFFERENT TIMES FOR 

01.0,005.0,  thv  

t 
025.0v  05.0v  1.0v  

2L
 L

 2L
 L

 2L
 L

 

1.7 9.35E-06 1.42E-02 4.48E-04 7.12E-02 3.21E-03 1.44E-01 

2.4 1.24E-04 4.38E-02 1.01E-03 8.99E-02 3.50E-03 1.24E-01 

3.1 3.72E-04 6.78E-02 1.29E-03 9.04E-02 3.11E-03 1.03E-01 

3.5 5.19E-04 7.61E-02 1.36E-03 8.74E-02 2.80E-03 9.34E-02 

4 6.70E-04 8.18E-02 1.38E-03 8.27E-02 2.40E-03 8.30E-02 

4.5 8.47E-04 8.36E-02 1.30E-03 7.25E-02 1.71E-03 6.71E-02 

5 9.04E-04 7.97E-02 1.16E-03 6.34E-02 1.21E-03 5.56E-02 

6 8.98E-04 7.42E-02 9.99E-04 5.58E-02 8.72E-04 4.71E-02 

7 9.35E-06 1.42E-02 4.48E-04 7.12E-02 3.21E-03 1.44E-01 

 

 

 

Figure 3.  Comparison of result at different times for 
01.0,005.0,005.0  thv  

 

 

Figure 4.  The numerical solution with. 01.0,005.0,005.0  thv  

 

Figure 5.  Error at time 3.1 with 01.0,005.0,005.0  thv . 

 

B. Test Problem (2) 

For our second test example consider the particular solution 
of the Burgers equation (1) [21, 22] 

 

)exp(1

)exp()(
),(








txU , 0,10  tx        (21) 

where  

v

tx )( 



 , 

and  ,   and   are constants and this is a wave which 

moves to the right with speed  . The constants are chosen to 

have values 4.0 , 6.0 , 125.0  with boundary 

conditions 

1),( taU  and 2.0),( tbU  ,  0t  

and initial condition is obtained when 0t is taken in (21). 

We take space step 
36

1h  and time step 001.0t  and 

velocity constant 01.0v and computation is done up to time 

5.0t are selected to comparison the result with [18]. Use 
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various values of v and computation is done up to time 3t

over the problem domain [0, 1]. 

The results of the algorithms together with exact solutions 
are documented in Tables III, IV. RD-CNN model produces 
almost the same results in terms of  the 

2L  and 
L  error 

norms. Numerical solution of RD-CNN model with 
corresponding exact solutions are documented at some values 
over the domain of the problem at time 5.0t  to  comparison 

with [18] to time 3t  in Table III. The 
2L  and 

L  error 

norms for this experiment are recorded almost the same at the 
time 5.0t . It is seen from Table 3.3 that good agreement 

with both numerical values and exact values is evident. 
Numerical result at various time are graphed in Fig.6, 7. Errors 
between the analytical and numerical solutions are graphed in 
Fig.8. 

TABLE III.  COMPARISON OF RESULT AT DIFFERENT TIME FOR 

01.0,
36

1,01.0  thv
 

t 
2L

 
QBGM CBGM RD – CNN 

0.5 1.93E-03 1.73E-03 1.22E-04 

1 - - 1.32E-04 

1.5 - - 1.65E-04 

2 - - 1.68E-03 

2.5 - - 1.68E-03 

3 - - 1.68E-03 

 

t 
L

 
QBGM CBGM RD – CNN 

0.5 6.35E-03 5.49E-03 
3.82E-

02 

1 - - 
4.22E-

02 

1.5 - - 
6.89E-

02 

2 - - 
2.44E-

01 

2.5 - - 
2.44E-

01 

3 - - 
2.43E-

01 

 

TABLE IV.  COMPARISON OF RESULT AT DIFFERENT TIME FOR 

01.0,
36

1,  thv
 

t 
025.0v  05.0v  1.0v  

2L
 L

 2L
 L

 2L
 L

 

0.5 2.38E-04 3.65E-02 3.27E-03 1.03E-01 1.40E-02 1.77E-01 

1 2.23E-04 3.45E-02 2.73E-03 9.45E-02 1.03E-02 1.46E-01 

1.5 1.26E-03 2.03E-01 3.39E-03 2.85E-01 7.89E-03 3.31E-01 

2 3.14E-03 3.19E-01 1.16E-02 5.07E-01 1.91E-02 5.18E-01 

3 3.17E-03 3.20E-01 1.37E-02 5.47E-01 3.35E-02 6.53E-01 

Figure 6.  Comparison of result at different time for 

01.0,
36

1,01.0  thv
 

Figure 7.  The numerical solution with 

01.0,
36

1,01.0  thv  

Figure 8.  Error at time 0.5 with. 01.0,
36

1,01.0  thv . 
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C. Test Problem (3) 

The Burgers’ equation (1) has the analytic solution of the 

form [3] 

  
])

22
tan[(

1
),(

vt

x
x

vt

v
txu





 ,        0t         (22) 

and both boundary conditions with 5.1,5.0  ba are 

given as: 

]),
44

1
tan[5.0(

1
),5.0(

vtvt

v
tu







                            

]),
44

3
tan[5.1(

1
),5.1(

vtvt

v
tu





            (23) 

and initial condition is obtained when 0t is taken in 

(22). We take space step 
40

1h , time step 01.0t , 

velocity constant 500/1v  and computation is done up to time 

1.2t   are selected to comparison the result with [3]. Use 

various values of  v  and computation is done up to time 

10t  over the problem domain [0.5, 1.5]. We observe that,  

the RD-CNN model produces almost the same results in terms 
of the absolute error 

2L  and 
L  error norms which is compute 

as the form.  

Absolute Error =   ,           (24) 

 






1

1

2

2 ))((
N

i

n

jNj uuL

 ,            (25)  
n

jNj
j

uuL )(max 

            (26) 

where 
ju  is the exact solution and  n

jNu )(  is the approximate 

solution at step j . 

Numerical solution of the reaction-diffusion CNN model 
with corresponding exact solutions are documented at some 
values over the domain of the problem at time 1.2t  to 

comparison with [16] to time  10t  in Table V. The absolute 

error, 
2L  and 

L  error norms for this experiment are 

recorded almost the same at the time 1.2t . It is seen from 

Table VI. Numerical result at various time are graphed in 
Fig.9. Error between the analytical and numerical solutions is 
graphed in Fig.10. 

TABLE V.  COMPARISON OF RESULT AT DIFFERENT TIME FOR 

01.0,
40

1,500/1  thv
 

t 

Absolute Error 
t=2.1

 

ADM [22] RD-CNN 

0.6 5.16E-06 8.59E-10 

0.8 1.91E-05 2.76E-10 

1.1 3.49E-05 5.28E-10 

t 

Absolute Error 
t=2.1

 

ADM [22] RD-CNN 

1.4 2.09E-05 4.20E-09 

2L
 

- 7.97E-09 

L
 

- 4.20E-09 

 

RD – CNN 

t 2L
 L

 t 2L
 L

 

2.1 7.97E-09 4.20E-09 6 2.38E-06 7.79E-07 

3 7.73E-07 3.72E-07 7 1.14E-06 3.47E-07 

4 1.69E-06 6.75E-07 8 5.51E-06 1.63E-06 

4.5 1.94E-06 6.94E-07 9 4.46E-06 1.25E-06 

5 1.02E-05 3.61E-06 10 4.81E-07 1.32E-07 

 

TABLE VI.  COMPARISON OF RESULT AT DIFFERENT TIME FOR 

01.0,
40

1,500/1  thv
 

t 
025.0v  05.0v  1.0v  

2L
 L

 2L
 L

 2L
 L

 

2.1 2.27E-06 7.51E-07 4.61E-05 1.21E-05 4.64E-04 1.04E-04 

3 1.75E-05 5.15E-06 3.64E-05 8.66E-06 5.36E-05 1.21E-05 

4 1.11E-05 2.94E-06 9.83E-07 2.46E-07 8.61E-05 1.93E-05 

5 4.63E-06 1.15E-06 1.18E-05 2.70E-06 4.20E-05 9.43E-06 

6 5.69E-06 1.35E-06 2.24E-07 6.99E-08 1.57E-04 3.49E-05 

7 4.47E-06 1.04E-06 4.35E-06 1.00E-06 3.77E-05 8.44E-06 

8 1.91E-06 4.48E-07 6.81E-05 1.53E-05 9.01E-05 2.01E-05 

9 3.85E-06 8.86E-07 2.13E-05 4.78E-06 1.35E-04 3.00E-05 

10 1.75E-06 4.08E-07 2.86E-06 6.65E-07 3.53E-05 7.87E-06 

 

 

Figure 9.  The numerical solution with 01.0,
40

1,500/1  thv . 
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Figure 10.  Error at time 2.1 with 01.0,
40

1,500/1  thv  
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