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Abstract- Google proposed MapReduce as a simple and 
flexible parallel programming model, for large-scale 
distributed data processing.  MapReduce framework allows 
users to quickly develop big-data applications and process big-
data effectively. However, unexpected malfunction may be 
found in cloud environment because a distributed system 
consists of several hardware, and this malfunction often causes 
delay of overall processing. In MapReduce framework, the 
underlying runtime system automatically parallelizes the 
computation through large-scale nodes of machines, handles 
machine failures, and schedules inter-machine communication 
to make use of the network and disks efficiently. Scheduling is 
one of the important factors in MapRduce. In order to achieve 
good performance a MapReduce scheduler must avoid 
unnecessary data transmission. Hence different scheduling 
algorithms for MapReduce are necessary to provide good 
performance. how to schedule the service resources to achieve 
the lowest cost becomes more and more important. In this 
paper, we describe the overview of fifteen different scheduling 
algorithms for MapReduce in Hadoop and their scheduling 
issues and problems. At the end, Advantages and 
disadvantages of these algorithms are identified. 
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I. INTRODUCTION 

As a popular programming model in cloud-based data 
processing environment, MapReduce and Hadoop [1] is 
Apache’s open source implementation of the MapReduce 
framework, are widely used both in industry and academic 
researches. MapReduce [2] is proposed by Google in 2004 and 
has become a popular parallel computing framework for large-
scale data processing since then. It is best suited for 
embarrassingly parallel and data-intensive tasks. It is designed 
to read large amount of data stored in a distributed file system 
such as Google File System (GFS) [3], process the data in 
parallel, aggregate and store the results back to the distributed 
file system. In a typical MapReduce job,  the master divides the 
input files into multiple map tasks, and then schedules both 
map tasks and reduce tasks to worker nodes in a cluster to 
achieve parallel processing [4]. The two major performance 
metrics in MapReduce are job execution time and cluster 
throughput. 

Nowadays, requirements for huge data processing are 
increasing, such as machine learning [5], scientific analysis [6], 
astrophysics [7] and etc. There are several programming model 
for processing massive data, such as Microsoft Dryad is 

another parallel computing framework [8], Scatter-Gather-
Merge [9], and MapReduce [2]. MapReduce is a distributed 
programming model for expressing distributed computation on 
massive amounts of data and an execution framework for 
large-scale data processing on clusters of commodity servers, it 
has been implemented in multi environments, such as Mar 
[10], Phoenix [11], and Hadoop [12]. 

One of the most important advantages of MapReduce is its 
convenience, such that, programmers can process massive data 
without knowing the details of distributed implementation, and 
users can process large scale of data by only providing the Map 
and Reduce interface. MapReduce programming framework 
enables controlling huge amount of data fast and efficiently by 
cooperation of many nodes [13]. 

The process of scheduling parallel tasks determines the 
order of task execution and the processor to which each task is 
assigned. Typically, an optimal schedule is achieved by 
minimizing the completion time of the last task. Finding the 
optimal schedule has long been known as an NP-complete 
problem in both homogeneous and heterogeneous 
environments [14]. Besides completion time, fairness is 
another important criterion for scheduling tasks if there are 
multiple jobs consisting of tasks to schedule. Fairness among 
jobs should be considered to keep any jobs from starving or 
being over penalized. 

The initial MapReduce model was designed for off-line 
data processing. However, it is now popularly applied in 
heterogeneous, sharing and multi-user environments. The 
research of the MapReduce scheduling algorithm mainly in 
five areas: (1) the data locality of the MapReduce tasks. It is 
the effect of the data distribution to task scheduling; (2) fault-
tolerant scheduling and expectation execution time in a 
heterogeneous environment; (3) resource sharing: for the 
hadoop cluster, how to share the computing resources through 
scheduling the user groups; (4) resource aware scheduling 
algorithm. It is based on the status of the cluster resources , 
such as memory, disk IO, network, and other factors; (5) real-
time scheduling. It is the study for the MapReduce real-time 
scheduling model. Nowadays, some MapReduce scheduling 
algorithms exist. Basic features such as data locality, user 
priority, fault tolerant and fairness are all considered by these 
algorithms. 

The rest of the paper is organized as follows: Section 2 
provides a background on Hadoop and MapReduce 
Mechanisms. In Section 3, we introduce the MapReduce 
Scheduling Algorithms. In Section 4 we analyzes and consider 
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advantage and disadvantage in the form of table. In Section 5 
conclude the paper.  

 

II. BACKGROUND 

In this section, we briefly describe how a Hadoop  and 
MapReduce Computing model work. 

A. Hadoop 

Hadoop is an implementation of MapReduce programming 
framework, which is an open source [15]. Hadoop runs over a 
distributed file system called Hadoop Distributed File System 
(HDFS) which has the same architecture as Google File 
System [16]. HDFS has a master/slave architecture. HDFS 
consists of one the master server, called Namenode and there 
are a number of slaves, called Datanodes. Namenode which 
controls several Datanodes, and   the Datanodes store actual 
data. Namenode supervises metadata such as information of 
directories, access log from users, detail of data location, and 
system logs. Datanode keeps data in Blocks. A Block is a basic 
unit for data storing in HDFS. Figure 1 briefly describes the 
Hadoop Architecture. 

 

 
Figure 1.  Hadoop Architecture. 

 

B. MapReduce Computing Model 

MapReduce [2] is a software framework introduced by 
Google to support distributed processing on large data sets on a 
cluster of computers. The input data is stored in a distributed 
file system, divided into a number of splits. Each split is loaded 
and processed by a number of map tasks, which in turn 
generate corresponding intermediate data that is grouped by 
keys. Then the intermediate data is shuffled (i.e., sent to 
corresponding reduce tasks according to the key) and processed 
by reduce tasks. Each of the reduce tasks is responsible for a 
range of key space and produces the final output, which is 
stored back to the distributed file system. Basically a 
MapReduce job goes through the following three phases.  

Map phase: The map phase consists of a number of map 
tasks. Each task is responsible for reading a block (split) of the 
input file, applying a user-defined map function, and producing 

map intermediate data. Typically the number of map tasks is 
much larger than the number of workers. 

Shuffle phase: The shuffle phase consists of a number of 
shuffle tasks. Each shuffle task is responsible for reading and 
sorting a subset of map intermediate data hashed on map output 
keys to that shuffle task and producing shuffle intermediate 
data. The map and shuffle phases can overlap because shuffle 
tasks can start reading map intermediate data as soon as any 
map task finishes. 

Reduce phase: The reduce phase consists of a number of 
reduce tasks. Each reduce task has a corresponding shuffle 
task. A reduce task reads the corresponding shuffle 
intermediate data, applies user-defined reduce function and 
produces the final results. Typically the number of 
shuffle/reduce tasks is set to be a little lower than the number 
of workers, but sometimes it is larger. 

MapReduce can be divided into Map function and Reduce 
function. In Map function, data is split into a set of small 
key/value pairs. A Map task processes one set of the key/value 
pairs. A JobTracker designs schedules of Map tasks by 
analyzing and subdividing jobs. The JobTracker assigns 
scheduled Map tasks to each TaskTracker and TaskTrackers 
process Map tasks. When a Map task is finished, the 
TaskTracker reports to the JobTracker about the status and 
stores the intermediate results of key/value pairs to its local file 
system. If there are unporecessed Map tasks, the JobTracker 
assigns a new Map task to the TaskTracker. 

In Reduce function, intermediate results of key/value pairs 
created by Map tasks are sorted and merged. Also, a Reduce 
task is a unit of process to perform users’ request like a Map 
task. At first, a JobTracker assigns a Reduce task to a 
TaskTracker. The assigned TaskTracker copies intermediate 
results of key/value pairs from other TaskTrackers which 
processed Map tasks to its local file system. Second, the 
TaskTracker sorts intermediate results of key/value pairs. 
Third, the TaskTracker merges the results according to users’ 
request. Finally, the JobTracker returns merged results to users. 
The output of MapReduce is reduced and simplified key/value 
pairs of the input, because they are sorted and merged 
according to user programs. The entire process is conducted in 
parallel. Figure 2 briefly describes the MapReduce workflow. 

Basically, one JobTracker is assigned to Namenode of 
HDFS, whereas several TaskTrackers are located in each of 
Datanodes of HDFS. JobTracker controls all TaskTrackers and 
supervises status of all TaskTrackers in the system. 
TaskTrackers update their status by sending HeartBeat in 
regular basis. HeartBeat message contains status of its sending 
TaskTracker, information of its executing task, and request for 
a new task. The status of TaskTracker includes information of 
its CPU, Memory, ID, Health, Maximum number of Map tasks 
and Maximum number of Reduce tasks. The information of 
executing task includes status of task, TaskID, start time of the 
task, finish time of the task, and progress rate of the task. 

Briefly In the fact, MapReduce Scheduling system takes on 
in six steps [2]: first, User program divides the MapReduce job. 
Second, master node distributes Map Tasks and Reduce Tasks 
to different workers. Third, Map Tasks reads in the data splits, 
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and runs map function on the data which is read in. fourth, Map 
Tasks write intermediate results into local disk. Then, Reduce 
Tasks read the intermediate results remotely, and run reduce 
function on the intermediate results which are read in. finally, 
These Reduce Tasks write the final results into the output files. 

 

 
Figure 2.  MapReduce Workflow. 

 

III. MAPREDUCE SCHEDULING ALGORITHMS  

The Scheduling is one of the most critical aspects of 
MapReduce. There are many algorithms to address these issues 
with different techniques and approaches. 

A. FIFO Scheduling Algorithm 

The original scheduling algorithm that was integrated 
within the JobTracker was called FIFO. In FIFO scheduling, a 
JobTracker pulled jobs from a work queue, oldest job first. 
This schedule had no concept of the priority or size of the job, 
but the approach was simple to implement and efficient [17]. 
Hadoop’s scheduler exploits FIFO policy. FIFO scheduler have 
many limitations such as The drawback of FIFO scheduling is 
poor response times for short jobs in the presence of large jobs 
and Low performance when run multiple types of jobs and it 
give good result only for single type of job. To address these 
problems scheduling algorithms such as Fair and Capacity was 
introducing. 

B. Fair Scheduling Algorithm 

Fair scheduling is a method of assigning resources to jobs 
such that all jobs get, on average, an equal share of resources 
over time [18]. When there is a single job running, that job uses 
the entire cluster. When other jobs are submitted, tasks slots 
that free up are assigned to the new jobs, so that each job gets 

roughly the same amount of CPU time. Unlike the default 
Hadoop scheduler, which forms a queue of jobs, this lets short 
jobs finish in reasonable time while not starving long jobs [19]. 
It is also an easy way to share a cluster between multiple of 
users. Fair sharing can also work with job priorities, the 
priorities are used as weights to determine the fraction of total 
compute time that each job gets. An important characteristic 
for a scheduler that manages tasks on this kind of cluster is fair 
sharing, meaning that each job needs to be allocated the same 
amount of resources [27]. For example, if two jobs are running, 
they should each receive half of the resources. To achieve fair 
sharing, a scheduler has to reallocate resources between jobs 
every time a new job starts. This reallocation can be done in 
two ways: 

 By killing running tasks to make room for a new job. 
Using this method, the resources needed for the new job 
are reallocated instantly, but the downside is that work is 
lost by killing jobs. 

 By waiting until running tasks finish. This method does 
not waste any work, but it can negatively impact fairness if 
tasks take a long time to finish. 

Facebook built the Fair Scheduler, which allocates 
resources evenly between multiple jobs and also supports 
capacity guarantees for production jobs. The objective of Fair 
scheduling algorithm is to do equal distribution of compute 
resources among the users/jobs in the system [20]. The 
scheduler actually organizes jobs by resource pool, and shares 
resources fairly between these pools. By default, there is a 
separate pool for each user. The Fair Scheduler can limit the 
number of concurrent running jobs per user and per pool. Also, 
it can limit the number of concurrent running tasks per pool. 
The traditional algorithms have high data transfer and the 
execution time of jobs. Tao et al. [21] introduced an improved 
FAIR scheduling algorithm, which takes into account job 
characteristics and data locality, which decreases both data 
transfer and the execution time of jobs. Thus, Fair scheduling 
can covers some limitation of FIFO such as: it can works well 
in both small and large clusters and less complex. Fair 
scheduling algorithm does not consider the job weight of each 
node, which this is an important disadvantage of it. 

C. Capacity Scheduler 

The Capacity Scheduler from Yahoo offers similar 
functionality to the Fair Scheduler but takes a somewhat 
different philosophy. In the Capacity Scheduler, you define a 
number of named queues. Each queue has a configurable 
number of map and reduce slots. The scheduler gives each 
queue its capacity when it contains jobs, and shares any unused 
capacity between the queues. However, within each queue, 
FIFO scheduling with priorities is used, except for one aspect 
you can place a limit on percent of running tasks per user, so 
that users share a cluster equally [17],[22]. In other words, the 
capacity scheduler tries to simulate a separate FIFO/priority 
cluster for each user and each organization, rather than 
performing fair sharing between all jobs. The Capacity 
Scheduler also supports configuring a wait time on each queue 
after which it is allowed to preempt other queues’ tasks if it is 
below its fair share.   

https://issues.apache.org/jira/browse/HADOOP-3445
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D. Hybrid Scheduler Based on Dynamic Priority 

In [25], the authors propose a case study in scheduling 
multiple workflows to the Cloud Computing paradigm by 
verifying that only the task that has a dependency value within 
the range specified. Nguyen et al. [23] propose a Hybrid 
Scheduler algorithm based on dynamic priority (HybS) in order 
to reduce the delay for variable length concurrent jobs, and 
relax the order of jobs to maintain data locality. The dynamic 
priorities can accommodate multiple task lengths, job sizes, 
and job waiting times by applying a greedy fractional knapsack 
algorithm for job task processor assignment. Also its provides a 
user-defined service level value for QoS. This algorithm is 
designed for data intensive workloads and tries to maintain 
data locality during job execution [24]. Their believes, average 
response time for the workloads approximately 2.1x faster over 
the Hadoop Fairs with a standard deviation of 1.4x. it achieves 
this improved response time by means of relaxing the strict 
proportional fairness with a simple exponential policy model. 
This algorithm is a fast and flexible scheduler that improves 
response time for multi-user Hadoop environments.  

E. Longest Approximate Time to End (LATE) 

The LATE scheduler was proposed by several engineers 
from the Berkley University of California in the article named 
"Improving MapReduce Performance in Heterogeneous 
Environments". LATE [26] algorithm improves the execution 
in Hadoop by finding real slow tasks. Although the LATE 
scheduler is proposed to resolve some problems that occur in 
heterogeneous environments, but this scheduler is designed to 
minimize the response time of first job in the job queue, and 
will prolong the response time of the other jobs in the job 
queue. LATE scheduler uses the past information to estimate 
the time to finish of tasks and is not suitable for environments 
with dynamic loading. For this it computes the remaining time 
of all the tasks and selects a set of tasks with longer remaining 
time when compared to all the nodes and considers them as 
real slow tasks. In this algorithm it does not depend on the data 
locality property for launching a speculative map task.  

In this algorithm the task which is speculatively executed is 
one which will finish farthest into the future because this task 
provides the greatest opportunity for a speculative copy to 
overtake the original and reduce the job’s response time [19].If 
nodes run at consistent speeds and if there is no cost to launch 
a speculative task on an otherwise idle node, this policy is 
optimal.  

Usually speculative tasks are launched only on fast nodes 
and not on stragglers in order to beat the original task with the 
speculative task. For this a heuristic is followed, i.e., don’t 
launch speculative tasks on nodes that are below some 
threshold (SlowNode Threshold) of total work performed. 
Another method is to allow more than one speculative copy of 
each task, but it is just the wastage of resources. In order to 
handle the fact that speculative tasks cost resources, the 
algorithm is implemented with two heuristics:  

 A SpeculativeCap which is a limit on the number of 
speculative tasks that can be running at once.  

 A SlowTask Threshold that a task’s progress rate is 
compared with, to determine whether it is “slow enough” 
to be speculated upon. This is done to prevent needless 
speculation when only fast tasks are running.  

Briefly the LATE algorithm works as follows:  

If a node asks for a new task and there are less speculative 
tasks running than the SpeculativeCap:  

 When the node’s total progress is below SlowNode 
Threshold defined, the request is ignored.  

 Running tasks that are not speculated by its time to finish 
are ranked currently.                                                                 

 A copy of the highest-ranked task with progress rate below 
SlowTask Threshold is launched.  

F. Self-Adaptive MapReduce (SAMR) 

Quan Chen et al. [13] proposed SAMR scheduling 
algorithm, which calculates progress of tasks dynamically and 
adapts to the continuously varying environment automatically. 
SAMR is inspired by LATE [28] scheduling algorithm. This 
scheduling algorithm holds historical information on each 
node. The TaskTracker reads the historical information and 
sets the parameters using these informations. Quan Chen et al. 
proposed several equations for finding slow tasks and slow 
TaskTrackers. The scheduler can launch backup tasks for slow 
tasks according to these equations. SAMR launches backup 
tasks for map tasks on the rapid nodes or on the slow reduce 
nodes, and launches the backup tasks for reduce tasks on the 
rapid nodes or on the slow map nodes. When a task or several 
tasks execute on TaskTracker, execution informations 
feedbacks to TaskTracker, and historical informations update 
using them. SAMR computes progress score of tasks more 
accurate than LATE, thus this scheduler launches backup tasks 
for really slow tasks that prolong job execution time. Self-
Adaptive MapReduce scheduling algorithm (SAMR) uses 
historical information to adjust stage weights of map and 
reduce tasks when estimating task execution times. However, 
SAMR does not consider the fact that for different types of 
jobs their map and reduce stage weights may be different. Even 
for the same type of jobs, different datasets may lead to 
different weights. 

G. An Enhanced Self-Adaptive MapReduce Scheduling 

Algorithm (ESAMR) 

Xiaoyn Sun et al. [29] proposed the ESAMR algorithm to 
overcome these problems. ESAMR classifies the historical 
information stored on every node into k clusters using a 
machine learning technique. If a running job has completed 
some map tasks on a node, ESAMR records the job’s 
temporary map phase weight (i.e., M1) on the node according 
to the job’s map tasks completed on the node. The temporary 
M1 weight is used to find the cluster whose M1 weight is the 
closest. ESAMR then uses the cluster’s stage weights to 
estimate the job’s map tasks’ TimeToEnd on the node and 
identify slow tasks that need to be re-executed. If a running job 
has not completed any map task on a node, the average of all k 
clusters’ stage weights are used for the job. In the reduce stage, 
ESAMR carries out a similar procedure. After a job has 
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finished, ESAMR calculates the job’s stage weights on every 
node and saves these new weighs as a part of the historical 
information. Finally, ESAMR applies k-means, a machine 
learning algorithm, to re-classify the historical information 
stored on every worker node into k clusters and saves the 
updated average stage weights for each of the k clusters. By 
utilizing more accurate stage weights to estimate the 
TimeToEnd of running tasks, ESAMR can identify slow tasks 
more accurately than SAMR, LATE, and Hadoop default 
scheduling algorithms. 

H. Delay Scheduling 

Zaharia et al. [16] proposed in the article "Delay 
Scheduling: A Simple Technique for Achieving Locality and 
Fairness in Cluster Scheduling" a simple algorithm which 
named delay scheduling To address the conflict between 
locality and fairness. In delay scheduling when a node requests 
a task, if the head of line job cannot launch a local task, we 
skip it and look at subsequent jobs. However, if a job has been 
skipped long enough, we start allowing it to launch non- local 
tasks, to avoid starvation. Delay scheduling is a solution that 
temporarily relaxes fairness to improve locality by asking jobs 
to wait for a scheduling opportunity on a node with local data. 
When a node requests a task, if the head of line job cannot 
launch a local task, it is skipped and looked at subsequent jobs. 
However, if a job has been skipped long enough, non-local 
tasks are allowed to launch to avoid starvation [30]. Also, with 
delay scheduling added to the fair scheduler, the overall 
performance improved. 

I. Context-Aware Scheduler 

Kumar et al. [31] propose a context-aware scheduler 
(CASH). The proposed algorithm uses the existing 
heterogeneity of most clusters and the workload mix, 
proposing optimizations for jobs using the same dataset. This 
scheduler increases the performance in heterogeneous Hadoop 
clusters.  Although still in a simulation stage, this approach 
seeks performance gains by using the best of each node on the 
cluster. The design is based on two key insights. First, a large 
percentage of MapReduce jobs are run periodically and 
roughly have the same characteristics regarding CPU, network, 
and disk requirements. Second, the nodes in a Hadoop cluster 
become heterogeneous over time due to failures, when newer 
nodes replace old ones. The proposed scheduler is designed to 
tackle this, taking into account job characteristics and the 
available resources within cluster nodes. The scheduler uses 
then three steps to accomplish its objective: classify jobs as 
CPU or I/O bound; This scheduler classifies the nodes as 
Computational or I/O good; and map the tasks of a job with 
different demands to the nodes that can fulfill the demands. 
Thus, by implementing CASH the performance of the 
heterogeneous cluster and the aggregate execution times of the 
jobs can be improved. 

J. Deadline Constraint Scheduler 

This scheduling solution was proposed in the article 
"Scheduling Hadoop Jobs to Meet Deadlines" [32]. The main 
problem that this scheduling algorithm tries to address is 
scheduling jobs based on deadline constraints specified by the 
user. To do this, it first proposes a job execution cost model 

that accounts for the different parameters that affect the job 
completion time of Hadoop and after that it presents the design 
of a constraint based Hadoop scheduler that takes a deadline as 
input data and determines if a job can be scheduled using the 
model that was proposed. Jobs are only scheduled if specified 
deadlines can be met. To verify if a deadline can be met, a 
schedulability test must be run. The condition for a job to be 
scheduable is that the minimum number of tasks required for a 
job's schedulability independent of task assignment approach 
for both map and reduce is less than or equal to the available 
slots. 

The main goals for designing the Deadline Constraint 
Scheduler were: 

 To be able to give feedback to the users whether the job 
can be completed in the given deadline. If the job can meet 
the deadline then it will be executed, else the job is 
rejected and in this case can try to resubmit it with a 
modified deadline requirement. 

 To maximize the number of jobs that can be run in the 
cluster while satisfying the deadlines for all the jobs. 

In [33], the authors propose an extensional MapReduce 
Task Scheduling algorithm for Deadline constraints in Hadoop 
platform: MTSD. It allows user specify a jobs deadline and 
tries to make the job be finished before the deadline. 

K. Matchmaking Scheduling Algorithm 

In [34], the authors develop a new MapReduce scheduling 
technique to enhance map task’s data locality. They had 
integrated this technique into Hadoop default FIFO scheduler 
and Hadoop fair scheduler. The main idea behind this 
algorithm is to give all nodes a fair chance to grab a local task 
before any non-local tasks are assigned to any nodes. The 
Matchmaking algorithm also relaxed the job order for task 
assignments meaning, that if a local task cannot be found for a 
specific node, then the scheduler moves on to the next job to 
try and find a local task. If no local tasks can be found for a 
node, then the node will not receive any task for this heartbeat 
interval. During one heartbeat interval all the other nodes that 
have free map slots will likely have sent their own heartbeats to 
the master node, and possibly received local task if it's the case. 
If the second time in a row a local task can't be found for a 
node, only then will a non-local task be assigned, so that we 
don't waste computing resources, but, during a heartbeat 
interval, the algorithm allows a node to take at most one non-
local task. To enforce this rule, the nodes use a locality marker 
that marks their status. If a local task cannot be assigned to a 
node, then, depending on the value of the node's locality 
marker, the node will either wait for a heartbeat interval or 
receive a non-local task. In the case that a new job is added to 
the queue, all the locality markers are reset, because the new 
job might have tasks that are local to the nodes. The 
matchmaking algorithm is applicable to any scheduling policy 
that defines the order in which jobs are given resources. 

L. SLO-Driven 

A key challenge in MapReduce environments is the ability 
to efficiently control resource allocation and task scheduling 
for achieving Service Level Objectives (SLOs) of MapReduce 
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jobs. However, there are few effective task scheduling methods 
to guarantee MapReduce jobs’ SLOs. Therefore, In [35], the 
authors address this challenge by proposing a SLO-driven task 
scheduling mechanism. Based on the MapReduce performance 
model they build, this mechanism dynamically adjusts resource 
allocation and task scheduling in order to guarantee the SLOs 
of jobs and improve global job utility. 

However, there is currently a lack of efficient task 
schedulers in MapReduce environments to meet jobs’ SLOs. In 
this algorithm, the authors propose a SLO-driven task 
scheduling mechanism to address the problem of how to 
effectively perform task scheduling in order to guarantee the 
SLO requirements and improve job utility. First, they present a 
MapReduce job performance model to build the relationship 
between job performance and resources the job holds. Second, 
based on the job performance model, they design a SLO-based 
resource estimator which estimates minimum resources 
required for a job to meet its SLO and a utility estimator which 
estimates job utility under different resource allocation 
strategies. Finally, they propose a SLO-driven task scheduler 
which implements task scheduling in order to guarantee jobs’ 
SLOs and enhance utility. 

In MapReduce environments, meeting SLOs of jobs is an 
important requirement. However, there are few efficient task 
schedulers to guarantee SLOs in MapReduce environments. In 
this algorithm, the authors addressed this problem and 
proposed a MapReduce job performance model and a SLO-
driven task scheduling mechanism. they job performance 
model maps the slot allocation for a job to its expected 
completion time using historical profile of the job. The SLO-
based resource estimator derives minimum slots for performing 
task scheduling with SLOs and the utility estimator estimate 
marginal utility for each slot allocation under consideration. 
This mechanism proved to be effective in achieving SLO, as 
well as improve the global job utility.  

M. Throughput Driven 

In [36], the authors proposes a novel technique for job-
intensive scheduling to improve the system throughput. The 
authors propose a novel technique, called Throughput Driven 
task (TD) scheduler, for the job-intensive MapReduce 
environment. The scheduler mostly focuses on the map phase, 
which dominates the computational cost of the most 
MapReduce applications.  

In the job-intensive environment, Briefly following 4 major 
factors which can impact the system throughput. the authors 
design the TD scheduler to satisfy the requirements of the 4 
factors. 

 High ratio of the local processing. Nonlocal tasks would 
lead more network transmission and more execution delay. 
In the distributed environment, it is necessary to maintain 
high ratio of the local processing.  

 Choosing a befitting nonlocal task. For the high 
parallelism, nonlocal execution cannot be avoided, and 
choosing a better nonlocal task would be beneficial for the 
throughput.  

 Avoiding hotspots. While processing in parallel, data 
stored on each node may be unbalanced in a certain period 
of time, there will be some nodes from which many 
nonlocal tasks read data, and calls the nodes as hotspots. 
The hotspot can distinctly impact system thoughput 
because a number of nodes read data from it so that the 
transmission speeds become lower, and the performance of 
hotspot itself decreases. 

  Full use of system resources. for energy saving. 

N. Real-Time Scheduling 

Many MapReduce applications require real-time data 
processing, scheduling real-time applications in MapReduce 
environments has become a significant problem. Polo et al. 
[37] developed a soft real-time scheduler that allows 
performance-driven management of MapReduce jobs. Dong et 
al. [38] extended the work by Polo et al. where a two-level 
MapReduce scheduler was developed to schedule mixed soft 
real-time and non-real-time jobs according to their respective 
performance demands. In [39], the authors create a novel real-
time scheduler for MapReduce, which overcomes the 
deficiencies of an existing scheduler. It avoids accepting jobs 
that will lead to deadline misses and improves the cluster 
utilization and ensuring the real-time property for all admitted 
MapReduce jobs. RTMR scheduler not only provides deadline 
guarantees to accepted jobs but also well utilizes system 
resources. RTMR scheduler includes:  

 The input data is available in (HDFS) before a job starts.  

 No preemption is allowed. The proposed scheduler orders 
the job queue according to job deadlines.  

 A MapReduce job contains two stages: map and reduce 
stages. A MapReduce job contains two stages: map and 
reduce stages. 

RTMR scheduler is composed of three components. The 
first and most important one is the admission controller, which 
makes decisions on whether to accept or reject a job. The 
admission controller makes decisions based on information 
maintained in job records. The second component is the job 
dispatcher, which assigns tasks to execute on worker nodes. 
The last component is the feedback controller. Since a job may 
finish at a different time than estimated, a feedback controller 
is designed to keep the admission controller up-to-date.  

In a heterogeneous environment, worker nodes have 
different data retrieving and processing power. In order to 
avoid deadline miss, they follow the same mechanism as 
adopted by the Deadline Constraint scheduler [32] where the 
longest time of running a map/reduce task is used in the 
execution time estimation. 

O. Locality-Aware Reduce Task Scheduler 

In [40], the authors proposed in the article "Locality-Aware 
Reduce Task Scheduling for MapReduce" another approach 
discussing the data locality problem. It deals specifically with 
Reduce tasks, they propose the Locality-aware reduce task 
scheduler (LARTS) which is supposed to increase Hadoop 
performance by taking into account locality when scheduling 
reduce tasks too so that the network traffic generated by 
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moving data to the node that needs it decreases. The scheduler, 
named Locality-Aware Reduce Task Scheduler (LARTS), uses 
a practical strategy that leverages network locations and sizes 
of partitions to exploit data locality. LARTS tries to obtain data 
locality for reduce tasks. It does this by scheduling a reduce 
task on the maximum-node of maximum-rack. Each reduce 
task has several partitions of data that it needs for the reducing 
process. All these partitions are spread on different nodes 
situated on different racks throughout the cluster. LARTS 
attempts to schedule Reducers as close as possible to their 
maximum amount of input data and conservatively switches to 
a relaxation strategy seeking a balance among scheduling 
delay, scheduling skew, system utilization, and parallelism. 

 

IV. ANALYSIS ADVANTAGE AND DISADVANTAGE  

Advantages and disadvantages of MapReduce scheduling 
methods are expressed in Tables I. In a heterogeneous 
environment where each node has different computing power 
the heuristic method is not well suited. To improve the 
response time of Hadoop in heterogeneous environments 
Longest Approximate Time to End (LATE) scheduling is 
devised. In the disadvantage column, some of these algorithms 
have null value. Because, they can achieved to their proposed 
and due to result of many articles we believe they don’t have 
any disadvantage that able to reduce their abilities and 
performances. All of these algorithms proposed to have some 
advantages and disadvantages. 

 

TABLE I.  COMPARISON OF DIFFERENT ALGORITHMS 

Algorithm Advantages Disadvantages 

FIFO 

 
 Cost of entire cluster    

scheduling process is less. 

 Implementation is easy. 

 poor response times for 
short jobs in the presence of 

large jobs.     

 designed only for single 
type of job. 

 Low performance when run 
multiple types of jobs. 

 

Fair 

 

 

 Is not complex.           

 It can provide fast 

response times for small 
jobs mixed with larger 

jobs.  

 

 Never consider the job 
weight of each node. 

 Capacity   Ensure guaranteed access 
with the         potential to 

reuse unused capacity and 

prioritize jobs within 
queues over large cluster. 

  

 The most complex than 
FIFO and Fair schedulers. 

Hybrid 

scheduler 

based on 

dynamic 

priority 

 Good performance 

because fast and flexible 
scheduler.  

 Improves response time 

for multi-user Hadoop 

environments. 

 

 
- 

 

 
 

 

 
 

 

LATE  Robust to node 

heterogeneity.  

 Takes into account node 

heterogeneity when 
deciding where to run 

speculative tasks.  

 Speculatively executes 
only tasks that will 

improve job response 
time, rather than any slow 

tasks.  

 

 Only takes action on 

appropriate slow tasks. 

 However it does not 

compute the remaining time 
for tasks correctly and 

cannot find real slow tasks 

in the end. 

 Poor performance due to the 

static manner in computing 
the progress of the tasks. 

SAMR  Reduce runtime 

 Save system resources 

 Scalability 

 It does not consider that the 
dataset sizes and the job 

types can also affect the 

stage weights of map and 
reduce tasks. 

 Don't consider the data 
locality management for 

launching backup        tasks. 

  

ESAMR  Reduce runtime 

 Save system resources 

 Scalability 

 Little overhead due to K-
means algorithm.  

 Allows only one speculative 

copy of a task to run on a 
node at a time.  

 Ignore data locality for 
launching backup tasks. 

 

Delay 

scheduling 
 Simplicity of scheduling - 

Context-

aware 
 Optimizations for jobs 

using the same dataset. 

 Performance of the 
heterogeneous cluster and 

the aggregate execution 

times of the jobs can be 
improved. 

 

 
 

- 

Deadline 

Constraint 

Scheduler 

 Maximize the number of 
jobs that can be run in the 

cluster. 

 Doesn't try to achieve 
maximum performance. 

 Low data locality rate. 

Matchmakin

g Scheduling 
 Increase data locality for 

map tasks. 

 Near-optimal average 
response times. 

 
- 

SLO-Driven 

 
 Enhances job utility 

guarantee the SLOs of 
jobs. 

 

- 

Throughput 

Driven 
 Improve the throughput of 

a MapReduce cluster 

system. 

 Excellent performance if 

the job queue contains a 

high percentage of small 
jobs. 

 
 

 

- 

Real-Time 

Scheduling 
 Achieves good cluster 

utilization. 

 Better performance than 

Deadline Constraint 

Scheduler. 

 

 

- 

Locality-

Aware 

Reduce Task 

Scheduler 

 Improve scheduling delay, 

scheduling skew, system 

utilization, and 
parallelism. 

 Reduce network traffic. 

 Increase of performance. 

 Static sweet spot 

determination (Sweet spot 

of a program is the spot at 
which early shuffle is 

triggered and provides the 

best performance for the 
program). 
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V. CONCLUSION 

In this paper we attempted to explain and analyzed fifteen 
different MapReduce scheduling algorithms. Besides 
completion time, fairness is another important criterion for 
scheduling tasks.  Longest Approximate Time to End (LATE) 
scheduling can improved response time of Hadoop in 
heterogeneous environments. So, to improve the overall 
MapReduce performance in the heterogeneous environments 
we can use of SAMR algorithms. ESAMR can identify slow 
tasks more accurately than SAMR. Also, to improvement data 
Locality LARTS is the best case. If you need a fast and flexible 
scheduler, Hybrid scheduler based on dynamic priority is better 
than anyone. For achieves good cluster utilization we can use 
of Real-Time Algorithm. 
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