

70

International Journal of

Science and Engineering Investigations vol. 4, issue 43, August 2015

ISSN: 2251-8843

Scheduling Algorithms for MapReduce Framework

Hadi Yazdanpanah
Department of Computer, Islamic Azad University, Bushehr Branch, Bushehr, Iran

(Hadiyazdanpanah@outlook.com)

Abstract- Google proposed MapReduce as a simple and
flexible parallel programming model, for large-scale
distributed data processing. MapReduce framework allows
users to quickly develop big-data applications and process big-
data effectively. However, unexpected malfunction may be
found in cloud environment because a distributed system
consists of several hardware, and this malfunction often causes
delay of overall processing. In MapReduce framework, the
underlying runtime system automatically parallelizes the
computation through large-scale nodes of machines, handles
machine failures, and schedules inter-machine communication
to make use of the network and disks efficiently. Scheduling is
one of the important factors in MapRduce. In order to achieve
good performance a MapReduce scheduler must avoid
unnecessary data transmission. Hence different scheduling
algorithms for MapReduce are necessary to provide good
performance. how to schedule the service resources to achieve
the lowest cost becomes more and more important. In this
paper, we describe the overview of fifteen different scheduling
algorithms for MapReduce in Hadoop and their scheduling
issues and problems. At the end, Advantages and
disadvantages of these algorithms are identified.

Keywords- Scheduling algorithm, MapReduce, Hadoop

I. INTRODUCTION

As a popular programming model in cloud-based data
processing environment, MapReduce and Hadoop [1] is
Apache’s open source implementation of the MapReduce
framework, are widely used both in industry and academic
researches. MapReduce [2] is proposed by Google in 2004 and
has become a popular parallel computing framework for large-
scale data processing since then. It is best suited for
embarrassingly parallel and data-intensive tasks. It is designed
to read large amount of data stored in a distributed file system
such as Google File System (GFS) [3], process the data in
parallel, aggregate and store the results back to the distributed
file system. In a typical MapReduce job, the master divides the
input files into multiple map tasks, and then schedules both
map tasks and reduce tasks to worker nodes in a cluster to
achieve parallel processing [4]. The two major performance
metrics in MapReduce are job execution time and cluster
throughput.

Nowadays, requirements for huge data processing are
increasing, such as machine learning [5], scientific analysis [6],
astrophysics [7] and etc. There are several programming model
for processing massive data, such as Microsoft Dryad is

another parallel computing framework [8], Scatter-Gather-
Merge [9], and MapReduce [2]. MapReduce is a distributed
programming model for expressing distributed computation on
massive amounts of data and an execution framework for
large-scale data processing on clusters of commodity servers, it
has been implemented in multi environments, such as Mar
[10], Phoenix [11], and Hadoop [12].

One of the most important advantages of MapReduce is its
convenience, such that, programmers can process massive data
without knowing the details of distributed implementation, and
users can process large scale of data by only providing the Map
and Reduce interface. MapReduce programming framework
enables controlling huge amount of data fast and efficiently by
cooperation of many nodes [13].

The process of scheduling parallel tasks determines the
order of task execution and the processor to which each task is
assigned. Typically, an optimal schedule is achieved by
minimizing the completion time of the last task. Finding the
optimal schedule has long been known as an NP-complete
problem in both homogeneous and heterogeneous
environments [14]. Besides completion time, fairness is
another important criterion for scheduling tasks if there are
multiple jobs consisting of tasks to schedule. Fairness among
jobs should be considered to keep any jobs from starving or
being over penalized.

The initial MapReduce model was designed for off-line
data processing. However, it is now popularly applied in
heterogeneous, sharing and multi-user environments. The
research of the MapReduce scheduling algorithm mainly in
five areas: (1) the data locality of the MapReduce tasks. It is
the effect of the data distribution to task scheduling; (2) fault-
tolerant scheduling and expectation execution time in a
heterogeneous environment; (3) resource sharing: for the
hadoop cluster, how to share the computing resources through
scheduling the user groups; (4) resource aware scheduling
algorithm. It is based on the status of the cluster resources ,
such as memory, disk IO, network, and other factors; (5) real-
time scheduling. It is the study for the MapReduce real-time
scheduling model. Nowadays, some MapReduce scheduling
algorithms exist. Basic features such as data locality, user
priority, fault tolerant and fairness are all considered by these
algorithms.

The rest of the paper is organized as follows: Section 2
provides a background on Hadoop and MapReduce
Mechanisms. In Section 3, we introduce the MapReduce
Scheduling Algorithms. In Section 4 we analyzes and consider

International Journal of Science and Engineering Investigations, Volume 4, Issue 43, August 2015 71

www.IJSEI.com Paper ID: 44315-11 ISSN: 2251-8843

advantage and disadvantage in the form of table. In Section 5
conclude the paper.

II. BACKGROUND

In this section, we briefly describe how a Hadoop and
MapReduce Computing model work.

A. Hadoop

Hadoop is an implementation of MapReduce programming
framework, which is an open source [15]. Hadoop runs over a
distributed file system called Hadoop Distributed File System
(HDFS) which has the same architecture as Google File
System [16]. HDFS has a master/slave architecture. HDFS
consists of one the master server, called Namenode and there
are a number of slaves, called Datanodes. Namenode which
controls several Datanodes, and the Datanodes store actual
data. Namenode supervises metadata such as information of
directories, access log from users, detail of data location, and
system logs. Datanode keeps data in Blocks. A Block is a basic
unit for data storing in HDFS. Figure 1 briefly describes the
Hadoop Architecture.

Figure 1. Hadoop Architecture.

B. MapReduce Computing Model

MapReduce [2] is a software framework introduced by
Google to support distributed processing on large data sets on a
cluster of computers. The input data is stored in a distributed
file system, divided into a number of splits. Each split is loaded
and processed by a number of map tasks, which in turn
generate corresponding intermediate data that is grouped by
keys. Then the intermediate data is shuffled (i.e., sent to
corresponding reduce tasks according to the key) and processed
by reduce tasks. Each of the reduce tasks is responsible for a
range of key space and produces the final output, which is
stored back to the distributed file system. Basically a
MapReduce job goes through the following three phases.

Map phase: The map phase consists of a number of map
tasks. Each task is responsible for reading a block (split) of the
input file, applying a user-defined map function, and producing

map intermediate data. Typically the number of map tasks is
much larger than the number of workers.

Shuffle phase: The shuffle phase consists of a number of
shuffle tasks. Each shuffle task is responsible for reading and
sorting a subset of map intermediate data hashed on map output
keys to that shuffle task and producing shuffle intermediate
data. The map and shuffle phases can overlap because shuffle
tasks can start reading map intermediate data as soon as any
map task finishes.

Reduce phase: The reduce phase consists of a number of
reduce tasks. Each reduce task has a corresponding shuffle
task. A reduce task reads the corresponding shuffle
intermediate data, applies user-defined reduce function and
produces the final results. Typically the number of
shuffle/reduce tasks is set to be a little lower than the number
of workers, but sometimes it is larger.

MapReduce can be divided into Map function and Reduce
function. In Map function, data is split into a set of small
key/value pairs. A Map task processes one set of the key/value
pairs. A JobTracker designs schedules of Map tasks by
analyzing and subdividing jobs. The JobTracker assigns
scheduled Map tasks to each TaskTracker and TaskTrackers
process Map tasks. When a Map task is finished, the
TaskTracker reports to the JobTracker about the status and
stores the intermediate results of key/value pairs to its local file
system. If there are unporecessed Map tasks, the JobTracker
assigns a new Map task to the TaskTracker.

In Reduce function, intermediate results of key/value pairs
created by Map tasks are sorted and merged. Also, a Reduce
task is a unit of process to perform users’ request like a Map
task. At first, a JobTracker assigns a Reduce task to a
TaskTracker. The assigned TaskTracker copies intermediate
results of key/value pairs from other TaskTrackers which
processed Map tasks to its local file system. Second, the
TaskTracker sorts intermediate results of key/value pairs.
Third, the TaskTracker merges the results according to users’
request. Finally, the JobTracker returns merged results to users.
The output of MapReduce is reduced and simplified key/value
pairs of the input, because they are sorted and merged
according to user programs. The entire process is conducted in
parallel. Figure 2 briefly describes the MapReduce workflow.

Basically, one JobTracker is assigned to Namenode of
HDFS, whereas several TaskTrackers are located in each of
Datanodes of HDFS. JobTracker controls all TaskTrackers and
supervises status of all TaskTrackers in the system.
TaskTrackers update their status by sending HeartBeat in
regular basis. HeartBeat message contains status of its sending
TaskTracker, information of its executing task, and request for
a new task. The status of TaskTracker includes information of
its CPU, Memory, ID, Health, Maximum number of Map tasks
and Maximum number of Reduce tasks. The information of
executing task includes status of task, TaskID, start time of the
task, finish time of the task, and progress rate of the task.

Briefly In the fact, MapReduce Scheduling system takes on
in six steps [2]: first, User program divides the MapReduce job.
Second, master node distributes Map Tasks and Reduce Tasks
to different workers. Third, Map Tasks reads in the data splits,

International Journal of Science and Engineering Investigations, Volume 4, Issue 43, August 2015 72

www.IJSEI.com Paper ID: 44315-11 ISSN: 2251-8843

and runs map function on the data which is read in. fourth, Map
Tasks write intermediate results into local disk. Then, Reduce
Tasks read the intermediate results remotely, and run reduce
function on the intermediate results which are read in. finally,
These Reduce Tasks write the final results into the output files.

Figure 2. MapReduce Workflow.

III. MAPREDUCE SCHEDULING ALGORITHMS

The Scheduling is one of the most critical aspects of
MapReduce. There are many algorithms to address these issues
with different techniques and approaches.

A. FIFO Scheduling Algorithm

The original scheduling algorithm that was integrated
within the JobTracker was called FIFO. In FIFO scheduling, a
JobTracker pulled jobs from a work queue, oldest job first.
This schedule had no concept of the priority or size of the job,
but the approach was simple to implement and efficient [17].
Hadoop’s scheduler exploits FIFO policy. FIFO scheduler have
many limitations such as The drawback of FIFO scheduling is
poor response times for short jobs in the presence of large jobs
and Low performance when run multiple types of jobs and it
give good result only for single type of job. To address these
problems scheduling algorithms such as Fair and Capacity was
introducing.

B. Fair Scheduling Algorithm

Fair scheduling is a method of assigning resources to jobs
such that all jobs get, on average, an equal share of resources
over time [18]. When there is a single job running, that job uses
the entire cluster. When other jobs are submitted, tasks slots
that free up are assigned to the new jobs, so that each job gets

roughly the same amount of CPU time. Unlike the default
Hadoop scheduler, which forms a queue of jobs, this lets short
jobs finish in reasonable time while not starving long jobs [19].
It is also an easy way to share a cluster between multiple of
users. Fair sharing can also work with job priorities, the
priorities are used as weights to determine the fraction of total
compute time that each job gets. An important characteristic
for a scheduler that manages tasks on this kind of cluster is fair
sharing, meaning that each job needs to be allocated the same
amount of resources [27]. For example, if two jobs are running,
they should each receive half of the resources. To achieve fair
sharing, a scheduler has to reallocate resources between jobs
every time a new job starts. This reallocation can be done in
two ways:

 By killing running tasks to make room for a new job.
Using this method, the resources needed for the new job
are reallocated instantly, but the downside is that work is
lost by killing jobs.

 By waiting until running tasks finish. This method does
not waste any work, but it can negatively impact fairness if
tasks take a long time to finish.

Facebook built the Fair Scheduler, which allocates
resources evenly between multiple jobs and also supports
capacity guarantees for production jobs. The objective of Fair
scheduling algorithm is to do equal distribution of compute
resources among the users/jobs in the system [20]. The
scheduler actually organizes jobs by resource pool, and shares
resources fairly between these pools. By default, there is a
separate pool for each user. The Fair Scheduler can limit the
number of concurrent running jobs per user and per pool. Also,
it can limit the number of concurrent running tasks per pool.
The traditional algorithms have high data transfer and the
execution time of jobs. Tao et al. [21] introduced an improved
FAIR scheduling algorithm, which takes into account job
characteristics and data locality, which decreases both data
transfer and the execution time of jobs. Thus, Fair scheduling
can covers some limitation of FIFO such as: it can works well
in both small and large clusters and less complex. Fair
scheduling algorithm does not consider the job weight of each
node, which this is an important disadvantage of it.

C. Capacity Scheduler

The Capacity Scheduler from Yahoo offers similar
functionality to the Fair Scheduler but takes a somewhat
different philosophy. In the Capacity Scheduler, you define a
number of named queues. Each queue has a configurable
number of map and reduce slots. The scheduler gives each
queue its capacity when it contains jobs, and shares any unused
capacity between the queues. However, within each queue,
FIFO scheduling with priorities is used, except for one aspect
you can place a limit on percent of running tasks per user, so
that users share a cluster equally [17],[22]. In other words, the
capacity scheduler tries to simulate a separate FIFO/priority
cluster for each user and each organization, rather than
performing fair sharing between all jobs. The Capacity
Scheduler also supports configuring a wait time on each queue
after which it is allowed to preempt other queues’ tasks if it is
below its fair share.

https://issues.apache.org/jira/browse/HADOOP-3445

International Journal of Science and Engineering Investigations, Volume 4, Issue 43, August 2015 73

www.IJSEI.com Paper ID: 44315-11 ISSN: 2251-8843

D. Hybrid Scheduler Based on Dynamic Priority

In [25], the authors propose a case study in scheduling
multiple workflows to the Cloud Computing paradigm by
verifying that only the task that has a dependency value within
the range specified. Nguyen et al. [23] propose a Hybrid
Scheduler algorithm based on dynamic priority (HybS) in order
to reduce the delay for variable length concurrent jobs, and
relax the order of jobs to maintain data locality. The dynamic
priorities can accommodate multiple task lengths, job sizes,
and job waiting times by applying a greedy fractional knapsack
algorithm for job task processor assignment. Also its provides a
user-defined service level value for QoS. This algorithm is
designed for data intensive workloads and tries to maintain
data locality during job execution [24]. Their believes, average
response time for the workloads approximately 2.1x faster over
the Hadoop Fairs with a standard deviation of 1.4x. it achieves
this improved response time by means of relaxing the strict
proportional fairness with a simple exponential policy model.
This algorithm is a fast and flexible scheduler that improves
response time for multi-user Hadoop environments.

E. Longest Approximate Time to End (LATE)

The LATE scheduler was proposed by several engineers
from the Berkley University of California in the article named
"Improving MapReduce Performance in Heterogeneous
Environments". LATE [26] algorithm improves the execution
in Hadoop by finding real slow tasks. Although the LATE
scheduler is proposed to resolve some problems that occur in
heterogeneous environments, but this scheduler is designed to
minimize the response time of first job in the job queue, and
will prolong the response time of the other jobs in the job
queue. LATE scheduler uses the past information to estimate
the time to finish of tasks and is not suitable for environments
with dynamic loading. For this it computes the remaining time
of all the tasks and selects a set of tasks with longer remaining
time when compared to all the nodes and considers them as
real slow tasks. In this algorithm it does not depend on the data
locality property for launching a speculative map task.

In this algorithm the task which is speculatively executed is
one which will finish farthest into the future because this task
provides the greatest opportunity for a speculative copy to
overtake the original and reduce the job’s response time [19].If
nodes run at consistent speeds and if there is no cost to launch
a speculative task on an otherwise idle node, this policy is
optimal.

Usually speculative tasks are launched only on fast nodes
and not on stragglers in order to beat the original task with the
speculative task. For this a heuristic is followed, i.e., don’t
launch speculative tasks on nodes that are below some
threshold (SlowNode Threshold) of total work performed.
Another method is to allow more than one speculative copy of
each task, but it is just the wastage of resources. In order to
handle the fact that speculative tasks cost resources, the
algorithm is implemented with two heuristics:

 A SpeculativeCap which is a limit on the number of
speculative tasks that can be running at once.

 A SlowTask Threshold that a task’s progress rate is
compared with, to determine whether it is “slow enough”
to be speculated upon. This is done to prevent needless
speculation when only fast tasks are running.

Briefly the LATE algorithm works as follows:

If a node asks for a new task and there are less speculative
tasks running than the SpeculativeCap:

 When the node’s total progress is below SlowNode
Threshold defined, the request is ignored.

 Running tasks that are not speculated by its time to finish
are ranked currently.

 A copy of the highest-ranked task with progress rate below
SlowTask Threshold is launched.

F. Self-Adaptive MapReduce (SAMR)

Quan Chen et al. [13] proposed SAMR scheduling
algorithm, which calculates progress of tasks dynamically and
adapts to the continuously varying environment automatically.
SAMR is inspired by LATE [28] scheduling algorithm. This
scheduling algorithm holds historical information on each
node. The TaskTracker reads the historical information and
sets the parameters using these informations. Quan Chen et al.
proposed several equations for finding slow tasks and slow
TaskTrackers. The scheduler can launch backup tasks for slow
tasks according to these equations. SAMR launches backup
tasks for map tasks on the rapid nodes or on the slow reduce
nodes, and launches the backup tasks for reduce tasks on the
rapid nodes or on the slow map nodes. When a task or several
tasks execute on TaskTracker, execution informations
feedbacks to TaskTracker, and historical informations update
using them. SAMR computes progress score of tasks more
accurate than LATE, thus this scheduler launches backup tasks
for really slow tasks that prolong job execution time. Self-
Adaptive MapReduce scheduling algorithm (SAMR) uses
historical information to adjust stage weights of map and
reduce tasks when estimating task execution times. However,
SAMR does not consider the fact that for different types of
jobs their map and reduce stage weights may be different. Even
for the same type of jobs, different datasets may lead to
different weights.

G. An Enhanced Self-Adaptive MapReduce Scheduling

Algorithm (ESAMR)

Xiaoyn Sun et al. [29] proposed the ESAMR algorithm to
overcome these problems. ESAMR classifies the historical
information stored on every node into k clusters using a
machine learning technique. If a running job has completed
some map tasks on a node, ESAMR records the job’s
temporary map phase weight (i.e., M1) on the node according
to the job’s map tasks completed on the node. The temporary
M1 weight is used to find the cluster whose M1 weight is the
closest. ESAMR then uses the cluster’s stage weights to
estimate the job’s map tasks’ TimeToEnd on the node and
identify slow tasks that need to be re-executed. If a running job
has not completed any map task on a node, the average of all k
clusters’ stage weights are used for the job. In the reduce stage,
ESAMR carries out a similar procedure. After a job has

International Journal of Science and Engineering Investigations, Volume 4, Issue 43, August 2015 74

www.IJSEI.com Paper ID: 44315-11 ISSN: 2251-8843

finished, ESAMR calculates the job’s stage weights on every
node and saves these new weighs as a part of the historical
information. Finally, ESAMR applies k-means, a machine
learning algorithm, to re-classify the historical information
stored on every worker node into k clusters and saves the
updated average stage weights for each of the k clusters. By
utilizing more accurate stage weights to estimate the
TimeToEnd of running tasks, ESAMR can identify slow tasks
more accurately than SAMR, LATE, and Hadoop default
scheduling algorithms.

H. Delay Scheduling

Zaharia et al. [16] proposed in the article "Delay
Scheduling: A Simple Technique for Achieving Locality and
Fairness in Cluster Scheduling" a simple algorithm which
named delay scheduling To address the conflict between
locality and fairness. In delay scheduling when a node requests
a task, if the head of line job cannot launch a local task, we
skip it and look at subsequent jobs. However, if a job has been
skipped long enough, we start allowing it to launch non- local
tasks, to avoid starvation. Delay scheduling is a solution that
temporarily relaxes fairness to improve locality by asking jobs
to wait for a scheduling opportunity on a node with local data.
When a node requests a task, if the head of line job cannot
launch a local task, it is skipped and looked at subsequent jobs.
However, if a job has been skipped long enough, non-local
tasks are allowed to launch to avoid starvation [30]. Also, with
delay scheduling added to the fair scheduler, the overall
performance improved.

I. Context-Aware Scheduler

Kumar et al. [31] propose a context-aware scheduler
(CASH). The proposed algorithm uses the existing
heterogeneity of most clusters and the workload mix,
proposing optimizations for jobs using the same dataset. This
scheduler increases the performance in heterogeneous Hadoop
clusters. Although still in a simulation stage, this approach
seeks performance gains by using the best of each node on the
cluster. The design is based on two key insights. First, a large
percentage of MapReduce jobs are run periodically and
roughly have the same characteristics regarding CPU, network,
and disk requirements. Second, the nodes in a Hadoop cluster
become heterogeneous over time due to failures, when newer
nodes replace old ones. The proposed scheduler is designed to
tackle this, taking into account job characteristics and the
available resources within cluster nodes. The scheduler uses
then three steps to accomplish its objective: classify jobs as
CPU or I/O bound; This scheduler classifies the nodes as
Computational or I/O good; and map the tasks of a job with
different demands to the nodes that can fulfill the demands.
Thus, by implementing CASH the performance of the
heterogeneous cluster and the aggregate execution times of the
jobs can be improved.

J. Deadline Constraint Scheduler

This scheduling solution was proposed in the article
"Scheduling Hadoop Jobs to Meet Deadlines" [32]. The main
problem that this scheduling algorithm tries to address is
scheduling jobs based on deadline constraints specified by the
user. To do this, it first proposes a job execution cost model

that accounts for the different parameters that affect the job
completion time of Hadoop and after that it presents the design
of a constraint based Hadoop scheduler that takes a deadline as
input data and determines if a job can be scheduled using the
model that was proposed. Jobs are only scheduled if specified
deadlines can be met. To verify if a deadline can be met, a
schedulability test must be run. The condition for a job to be
scheduable is that the minimum number of tasks required for a
job's schedulability independent of task assignment approach
for both map and reduce is less than or equal to the available
slots.

The main goals for designing the Deadline Constraint
Scheduler were:

 To be able to give feedback to the users whether the job
can be completed in the given deadline. If the job can meet
the deadline then it will be executed, else the job is
rejected and in this case can try to resubmit it with a
modified deadline requirement.

 To maximize the number of jobs that can be run in the
cluster while satisfying the deadlines for all the jobs.

In [33], the authors propose an extensional MapReduce
Task Scheduling algorithm for Deadline constraints in Hadoop
platform: MTSD. It allows user specify a jobs deadline and
tries to make the job be finished before the deadline.

K. Matchmaking Scheduling Algorithm

In [34], the authors develop a new MapReduce scheduling
technique to enhance map task’s data locality. They had
integrated this technique into Hadoop default FIFO scheduler
and Hadoop fair scheduler. The main idea behind this
algorithm is to give all nodes a fair chance to grab a local task
before any non-local tasks are assigned to any nodes. The
Matchmaking algorithm also relaxed the job order for task
assignments meaning, that if a local task cannot be found for a
specific node, then the scheduler moves on to the next job to
try and find a local task. If no local tasks can be found for a
node, then the node will not receive any task for this heartbeat
interval. During one heartbeat interval all the other nodes that
have free map slots will likely have sent their own heartbeats to
the master node, and possibly received local task if it's the case.
If the second time in a row a local task can't be found for a
node, only then will a non-local task be assigned, so that we
don't waste computing resources, but, during a heartbeat
interval, the algorithm allows a node to take at most one non-
local task. To enforce this rule, the nodes use a locality marker
that marks their status. If a local task cannot be assigned to a
node, then, depending on the value of the node's locality
marker, the node will either wait for a heartbeat interval or
receive a non-local task. In the case that a new job is added to
the queue, all the locality markers are reset, because the new
job might have tasks that are local to the nodes. The
matchmaking algorithm is applicable to any scheduling policy
that defines the order in which jobs are given resources.

L. SLO-Driven

A key challenge in MapReduce environments is the ability
to efficiently control resource allocation and task scheduling
for achieving Service Level Objectives (SLOs) of MapReduce

International Journal of Science and Engineering Investigations, Volume 4, Issue 43, August 2015 75

www.IJSEI.com Paper ID: 44315-11 ISSN: 2251-8843

jobs. However, there are few effective task scheduling methods
to guarantee MapReduce jobs’ SLOs. Therefore, In [35], the
authors address this challenge by proposing a SLO-driven task
scheduling mechanism. Based on the MapReduce performance
model they build, this mechanism dynamically adjusts resource
allocation and task scheduling in order to guarantee the SLOs
of jobs and improve global job utility.

However, there is currently a lack of efficient task
schedulers in MapReduce environments to meet jobs’ SLOs. In
this algorithm, the authors propose a SLO-driven task
scheduling mechanism to address the problem of how to
effectively perform task scheduling in order to guarantee the
SLO requirements and improve job utility. First, they present a
MapReduce job performance model to build the relationship
between job performance and resources the job holds. Second,
based on the job performance model, they design a SLO-based
resource estimator which estimates minimum resources
required for a job to meet its SLO and a utility estimator which
estimates job utility under different resource allocation
strategies. Finally, they propose a SLO-driven task scheduler
which implements task scheduling in order to guarantee jobs’
SLOs and enhance utility.

In MapReduce environments, meeting SLOs of jobs is an
important requirement. However, there are few efficient task
schedulers to guarantee SLOs in MapReduce environments. In
this algorithm, the authors addressed this problem and
proposed a MapReduce job performance model and a SLO-
driven task scheduling mechanism. they job performance
model maps the slot allocation for a job to its expected
completion time using historical profile of the job. The SLO-
based resource estimator derives minimum slots for performing
task scheduling with SLOs and the utility estimator estimate
marginal utility for each slot allocation under consideration.
This mechanism proved to be effective in achieving SLO, as
well as improve the global job utility.

M. Throughput Driven

In [36], the authors proposes a novel technique for job-
intensive scheduling to improve the system throughput. The
authors propose a novel technique, called Throughput Driven
task (TD) scheduler, for the job-intensive MapReduce
environment. The scheduler mostly focuses on the map phase,
which dominates the computational cost of the most
MapReduce applications.

In the job-intensive environment, Briefly following 4 major
factors which can impact the system throughput. the authors
design the TD scheduler to satisfy the requirements of the 4
factors.

 High ratio of the local processing. Nonlocal tasks would
lead more network transmission and more execution delay.
In the distributed environment, it is necessary to maintain
high ratio of the local processing.

 Choosing a befitting nonlocal task. For the high
parallelism, nonlocal execution cannot be avoided, and
choosing a better nonlocal task would be beneficial for the
throughput.

 Avoiding hotspots. While processing in parallel, data
stored on each node may be unbalanced in a certain period
of time, there will be some nodes from which many
nonlocal tasks read data, and calls the nodes as hotspots.
The hotspot can distinctly impact system thoughput
because a number of nodes read data from it so that the
transmission speeds become lower, and the performance of
hotspot itself decreases.

 Full use of system resources. for energy saving.

N. Real-Time Scheduling

Many MapReduce applications require real-time data
processing, scheduling real-time applications in MapReduce
environments has become a significant problem. Polo et al.
[37] developed a soft real-time scheduler that allows
performance-driven management of MapReduce jobs. Dong et
al. [38] extended the work by Polo et al. where a two-level
MapReduce scheduler was developed to schedule mixed soft
real-time and non-real-time jobs according to their respective
performance demands. In [39], the authors create a novel real-
time scheduler for MapReduce, which overcomes the
deficiencies of an existing scheduler. It avoids accepting jobs
that will lead to deadline misses and improves the cluster
utilization and ensuring the real-time property for all admitted
MapReduce jobs. RTMR scheduler not only provides deadline
guarantees to accepted jobs but also well utilizes system
resources. RTMR scheduler includes:

 The input data is available in (HDFS) before a job starts.

 No preemption is allowed. The proposed scheduler orders
the job queue according to job deadlines.

 A MapReduce job contains two stages: map and reduce
stages. A MapReduce job contains two stages: map and
reduce stages.

RTMR scheduler is composed of three components. The
first and most important one is the admission controller, which
makes decisions on whether to accept or reject a job. The
admission controller makes decisions based on information
maintained in job records. The second component is the job
dispatcher, which assigns tasks to execute on worker nodes.
The last component is the feedback controller. Since a job may
finish at a different time than estimated, a feedback controller
is designed to keep the admission controller up-to-date.

In a heterogeneous environment, worker nodes have
different data retrieving and processing power. In order to
avoid deadline miss, they follow the same mechanism as
adopted by the Deadline Constraint scheduler [32] where the
longest time of running a map/reduce task is used in the
execution time estimation.

O. Locality-Aware Reduce Task Scheduler

In [40], the authors proposed in the article "Locality-Aware
Reduce Task Scheduling for MapReduce" another approach
discussing the data locality problem. It deals specifically with
Reduce tasks, they propose the Locality-aware reduce task
scheduler (LARTS) which is supposed to increase Hadoop
performance by taking into account locality when scheduling
reduce tasks too so that the network traffic generated by

International Journal of Science and Engineering Investigations, Volume 4, Issue 43, August 2015 76

www.IJSEI.com Paper ID: 44315-11 ISSN: 2251-8843

moving data to the node that needs it decreases. The scheduler,
named Locality-Aware Reduce Task Scheduler (LARTS), uses
a practical strategy that leverages network locations and sizes
of partitions to exploit data locality. LARTS tries to obtain data
locality for reduce tasks. It does this by scheduling a reduce
task on the maximum-node of maximum-rack. Each reduce
task has several partitions of data that it needs for the reducing
process. All these partitions are spread on different nodes
situated on different racks throughout the cluster. LARTS
attempts to schedule Reducers as close as possible to their
maximum amount of input data and conservatively switches to
a relaxation strategy seeking a balance among scheduling
delay, scheduling skew, system utilization, and parallelism.

IV. ANALYSIS ADVANTAGE AND DISADVANTAGE

Advantages and disadvantages of MapReduce scheduling
methods are expressed in Tables I. In a heterogeneous
environment where each node has different computing power
the heuristic method is not well suited. To improve the
response time of Hadoop in heterogeneous environments
Longest Approximate Time to End (LATE) scheduling is
devised. In the disadvantage column, some of these algorithms
have null value. Because, they can achieved to their proposed
and due to result of many articles we believe they don’t have
any disadvantage that able to reduce their abilities and
performances. All of these algorithms proposed to have some
advantages and disadvantages.

TABLE I. COMPARISON OF DIFFERENT ALGORITHMS

Algorithm Advantages Disadvantages

FIFO

 Cost of entire cluster

scheduling process is less.

 Implementation is easy.

 poor response times for
short jobs in the presence of

large jobs.

 designed only for single
type of job.

 Low performance when run
multiple types of jobs.

Fair

 Is not complex.

 It can provide fast

response times for small
jobs mixed with larger

jobs.

 Never consider the job
weight of each node.

 Capacity Ensure guaranteed access
with the potential to

reuse unused capacity and

prioritize jobs within
queues over large cluster.

 The most complex than
FIFO and Fair schedulers.

Hybrid

scheduler

based on

dynamic

priority

 Good performance

because fast and flexible
scheduler.

 Improves response time

for multi-user Hadoop

environments.

-

LATE Robust to node

heterogeneity.

 Takes into account node

heterogeneity when
deciding where to run

speculative tasks.

 Speculatively executes
only tasks that will

improve job response
time, rather than any slow

tasks.

 Only takes action on

appropriate slow tasks.

 However it does not

compute the remaining time
for tasks correctly and

cannot find real slow tasks

in the end.

 Poor performance due to the

static manner in computing
the progress of the tasks.

SAMR Reduce runtime

 Save system resources

 Scalability

 It does not consider that the
dataset sizes and the job

types can also affect the

stage weights of map and
reduce tasks.

 Don't consider the data
locality management for

launching backup tasks.

ESAMR Reduce runtime

 Save system resources

 Scalability

 Little overhead due to K-
means algorithm.

 Allows only one speculative

copy of a task to run on a
node at a time.

 Ignore data locality for
launching backup tasks.

Delay

scheduling
 Simplicity of scheduling -

Context-

aware
 Optimizations for jobs

using the same dataset.

 Performance of the
heterogeneous cluster and

the aggregate execution

times of the jobs can be
improved.

-

Deadline

Constraint

Scheduler

 Maximize the number of
jobs that can be run in the

cluster.

 Doesn't try to achieve
maximum performance.

 Low data locality rate.

Matchmakin

g Scheduling
 Increase data locality for

map tasks.

 Near-optimal average
response times.

-

SLO-Driven

 Enhances job utility

guarantee the SLOs of
jobs.

-

Throughput

Driven
 Improve the throughput of

a MapReduce cluster

system.

 Excellent performance if

the job queue contains a

high percentage of small
jobs.

-

Real-Time

Scheduling
 Achieves good cluster

utilization.

 Better performance than

Deadline Constraint

Scheduler.

-

Locality-

Aware

Reduce Task

Scheduler

 Improve scheduling delay,

scheduling skew, system

utilization, and
parallelism.

 Reduce network traffic.

 Increase of performance.

 Static sweet spot

determination (Sweet spot

of a program is the spot at
which early shuffle is

triggered and provides the

best performance for the
program).

International Journal of Science and Engineering Investigations, Volume 4, Issue 43, August 2015 77

www.IJSEI.com Paper ID: 44315-11 ISSN: 2251-8843

V. CONCLUSION

In this paper we attempted to explain and analyzed fifteen
different MapReduce scheduling algorithms. Besides
completion time, fairness is another important criterion for
scheduling tasks. Longest Approximate Time to End (LATE)
scheduling can improved response time of Hadoop in
heterogeneous environments. So, to improve the overall
MapReduce performance in the heterogeneous environments
we can use of SAMR algorithms. ESAMR can identify slow
tasks more accurately than SAMR. Also, to improvement data
Locality LARTS is the best case. If you need a fast and flexible
scheduler, Hybrid scheduler based on dynamic priority is better
than anyone. For achieves good cluster utilization we can use
of Real-Time Algorithm.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph , "A View of Cloud
Computing ", Comm. Of the ACM, Vol. 53, No. 4, pp. 50-58, April
2010.

[2] J. Dean and S. Ghemawat, “MapReduce: Simplied Data Processing on
Large Clusters”, In Proc. of 5th Symposium on Operating Systems
Design and Implementation, 2008, pp. 137-150.

[3] S. Ghemawat, H. Gobioff, and S. T. Leung, "The Google File System",
In ACM Symposium on Operating Systems Principles (SOSP), 2003.

[4] W. Jiang, T. Ravi and G. Agrawal, "Comparing MapReduce and
Freeride For Data-Intensive Applications", In Proc. Of Cluster
Computing and Workshops, 2009, pp. 1-10.

[5] C. T. Chu, S. K. Kim, Y. A. Lin, Y. Y. Yu, G. Bradski, A. Y. Ng, K.
Olukotun, Map-reduce for machine learning on multicore,
http://www.cs.standford.edu/peop;e/ang//papers/nips06-
mapreducemulticoure.pdf(2006), Accessed 1 March 2012.

[6] J. Ekanayake, S. Pallickara, G. Fox, "MapReduce for data intensive
scientific analyses", Proceedings of the IEEE Fourth International
Conference on eScience, 2008.

[7] G. Mackey, S. Sehrish, J. Bent, J. Lopez, S. Habib, J. Wang,
"Introducing map-reduce to high end computing", Proceedings of the
3rd Patascale Data Storage Workshop, 2008.

[8] M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly, "Dryad: distributed
data-parallel programs from sequential building blocks", Proceedings of
the 2nd ACM SIGOPS/EuroSys European Conference on Computer
Systems, 2007.

[9] H. Han, H. Jung, H. Eom, H. Y. Yeom, "Scatter-Gather-Merge:an
efficient star-join query processing algorithm for data-parallel
frameworks", Cluster Computing, 14(2), 2010.

[10] B. He, Q. Luo, N. K. Govindaraju, "Mars: accelerating MapReduce with
graphics processors", IEEE Trans. Parallel Distribute System, 22(4),
2011.

[11] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, C. Kozyrakis,
"Evaluating mapreduce for multi-core and multiprocessor systems",
IEEE 13th International Symposium on High Performance Computer
Architecture, 2007.

[12] The Apache Software Foundation: Hadoop
(2012).http://hadoop.apache.org. Accessed 1 March 2012.

[13] Q. Chen, D. Zhang, M. Guo, Q. Deng, and S. Guo, “ SAMR: a self-
adaptive MapReduce scheduling algorithm in heterogeneous
environment ”, In Proc. of the 10th IEEE International Conference on
Computer and information Technology, 2010, pp. 2736-2743.

[14] O. H. Ibarra and C. E. Kim. "Heuristic algorithms for scheduling
independent tasks on nonidentical processors", Journal of the ACM,
24(2), 1977, pp. 280–289.

[15] C. Tian, H. Zhou, Y. He and L. Zha, “A Dynamic MapReduce
Scheduler for Heterogeneous Workloads”, In Proc. of the Eighth

International Conference on Grid and Cooperative Computing, 2009, pp.
218-224.

[16] M. Zaharia, D. Borthakur, J.S. Sarma, K. Elmeleegy, S. Shenker and I.
Stoica, “ Delay scheduling: a simple technique for achieving locality and
fairness in cluster scheduling”, In: Proceedings of the fifth European
conference on computer systems, New York, NY, USA: ACM, 2010,
pp. 265–278.

[17] Hadoop, “Hadoop home page.” http://hadoop.apache.org/.

[18] Hadoop’s Fair Scheduler.
https://hadoop.apache.org/docs/r1.2.1/fair_scheduler.

[19] B. P. Andrews and A. Binu, “ Survey on Job Schedulers in Hadoop
Cluster ”, IOSR Journal of Computer Engineering, Vol.15, NO. 1, Sep -
Oct. 2013, pp. 46-50.

[20] The Apache Hadoop Project. http://www.hadoop.org.

[21] Y. Tao Y, Q. Zhang, L. Shi and P. Chen, “ Job scheduling optimization
for multi-user MapReduce clusters ”, In: The fourth international
symposium on parallel architectures algorithms and programming,
IEEE, 2011, pp. 213–217.

[22] J. Chen, D. Wang and W. Zhao, “ A Task Scheduling Algorithm for
Hadoop Platform ”, JOURNAL OF COMPUTERS, VOL. 8, NO. 4,
APRIL 2013, pp. 929-936.

[23] P. Nguyen, T. Simon, M. Halem, D. Chapman and Q. Le, “A hybrid
scheduling algorithm for data intensive workloads in aMapReduce
environment”, In: Proceedings of the 2012 IEEE/ ACM fifth
international conference on utility and cloud computing. Washington,
DC, USA: IEEE computer society; UCC'12, 2012, pp. 161-168.

[24] I. Polato “A comprehensive view of Hadoop research—A systematic
literature review ”, Journal of Network and Computer Applications,
2014, http://dx.doi.org/10.1016/j.jnca.2014.07.022.

[25] B. A. Kumar and T. Ravichandran, "Instance and value (IVH) algorithm
and dodging dependency for scheduling multiple instances in hybrid
cloud computing", Pattern Recognition, Informatics and Mobile
Engineering (PRIME), International Conference, 2013.

[26] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz and I. Stoica,
“Improving MapReduce performance in heterogeneous environments ”,
In: OSDI 2008: 8th USENIX Symposium on Operating Systems Design
and Implementation, 2008.

[27] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, I.
Stoica, "Job scheduling for multi-user MapReduce clusters",
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-55.pdf.

[28] A. Konwinski, "Improving mapreduce performance in heterogeneous
environments", Technical Report No. UCB/EECS-2009-183, University
of California, Berkeley, 2009.

[29] X. Sun, C. He and Y. Lu, “ESAMR: An Enhanced Self-Adaptive
MapReduce Scheduling Algorithm”, IEEE 18th International
Conference on Parallel and Distributed Systems, 2012.

[30] A. P. Kulkarni and M. Khandewal, “ Survey on Hadoop and
Introduction to YARN ”, International Journal of Emerging Technology
and Advanced Engineering, Vol.4, NO. 5, May 2014, pp. 82-87.

[31] K. A. Kumar, V. K. Konishetty, K. Voruganti and G. Rao, “ CASH:
context aware scheduler for Hadoop”, In: Proceedings of the
international conference on advances in computing, communications and
informatics, New York, NY, USA: ACM, 2012, pp. 52–61.

[32] K. Kc and K. Anyanwu, “Scheduling hadoop jobs to meet deadlines",
In 2nd IEEE International Conference on Cloud Computing Technology
and Science (CloudCom), 2010, pp. 388 –392.

[33] Z. Tang. J. Zhou, K. Li and R. Li, "A MapReduce task scheduling
algorithm for deadline constraints", Cluster Computing, Vol. 16, 2013.

[34] C. He, Y. Lu, D. Swanson, "Matchmaking: A New MapReduce
Scheduling Technique".

[35] J. Wang, Q. Li, Y. Shi, "SLO-Driven Task Scheduling in MapReduce
Environments ", 10th Web Information System and Application
Conference, 2013, pp. 308-313.

[36] X. Wang, D. Shen, G. Yu, T. Nie, Y. Kou, "A Throughput Driven Task
Scheduler for Improving MapReduce Performance in Job-intensive
Environments ", IEEE International Congress on Big Data, 2013, pp.
211-218.

http://www.cs.standford.edu/peop;e/ang/papers/nips06-
http://hadoop.apache.org/
https://hadoop.apache.org/docs/r1.2.1/fair_scheduler
http://www.hadoop.org/
http://dx.doi.org/10.1016/j.jnca.2014.07.022
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-55.pdf

International Journal of Science and Engineering Investigations, Volume 4, Issue 43, August 2015 78

www.IJSEI.com Paper ID: 44315-11 ISSN: 2251-8843

[37] J. Polo, D. Carrera, Y. Becerra, M. Steinder, and I. Whalley,
"Performance-driven task co-scheduling for mapreduce environments",
In Network Operations and Management Symposium (NOMS), IEEE,
2010, pp. 373 –380, 19-23.

[38] X. Dong, Y. Wang, H. Liao, “Scheduling Mixed Realtime and Non-
real-time Applications in MapReduce Environment”, In the proceeding
of 17th International Conference on Parallel and Distributed Systems,
2011, pp. 9 – 16.

[39] C. He, Y. Lu and D. Swanson, " Real-Time Scheduling in MapReduce
Clusters ", IEEE International Conference on High Performance
Computing and Communications & IEEE International Conference on
Embedded and Ubiquitous Computing, 2013, pp.1536-1544.

[40] M. Hammoud and M. Sakr, “ Locality-aware reduce task scheduling for
MapReduce”, In: The third international conference on cloud computing
technology and science, IEEE, 2011, pp. 570–576.

