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Abstract- As the fPCG signals are widely used to monitor the 
condition of the fetus health, it needs to be save or transmit 
with lower costs; thus the compression of fPCG with Compress 
Sensing (CS) method is a beneficial method to reach this 
purpose. As the fPCG signal is not spares in time domain, it 
should be brought to another orthogonal space. Because of the 
structured sparsity in this new space, the used CS method 
should be adapted to the fPCG signal’s conditions which lead 
to the Shuffled CS (S-CS) method. In this article we innovate 
and develop the Quantized S-CS (QS-CS) method to improve 
the compression rate of the S-CS. As the reconstruction process 
is a convex optimization problem, it extremely limits the 
quantization noise in QS-CS. The simulation results show that 
the proposed QS-CS method, along with providing a greater 

,CR has equivalent reconstruction performance to the primer 

S-CS method. 

Keywords- Compressed Sensing, fPCG signal, Quantization, 

orthogonal spaces, reconstruction methods 

 

I. INTRODUCTION 

Since medical care during the pregnancy time plays an 
impressive role to prevent the fetus anomalies, the mother and 
fetus health should be monitored clinically over three separate 
periods each which lingers three months. Measuring the fetus 
heart beat rate starts in the twenty fourth week of pregnancy 
and is determined daily. One of the safest methods for this 
purpose is recording the heart beat sound which contributes the 
Fetal Phonocardiography (fPCG) methods [1]-[4]. Sometimes 
the doctors need to have this fPCG signals daily, thus the 
mother should be able to tape it and send it to the clinic as 
easily as possible. Therefore, the recorded data may contain 
massive information that its storage and transmission is very 
expensive. To decrease the expenditure of storage and 
transmission of fPCG signal, it is inevitable to develop a 
method to compress the recorded data. In [5]-[10] the authors 
proposed efficient methods for compression of the clinical 
signals including Electroencephalography (EEG) and 
Electrocardiography (ECG) signals. Also an innovative fECG 
denoising and diagnosis methods is developed in [11]. To our 
knowledge, no work has been done for fPCG signal 
compression and it is an open problem in biomedical 
engineering.  

The Compressed Sensing (CS) method firstly presented in 
[12] and [13] and is claimed that can compress the signals with 

a rate lower than the Nyquist rate and reconstruct the original 
signal efficiently. Also, the authors in [14] and [15] employed a 
quantization to maintain furthers compression rate of CS. 

On the other hand, since especial conditions of fPCG 
signals, the CS method should be adapted to fPCG conditions 
for signal compression; in [16] we developed a Shuffled CS (S-
CS) method for fPCG signal compression. In this article we 
invent the novel Quantized S-CS (QS-CS) method to improve 
the compression rate of the previous S-CS for fPCG signals; in 
addition, we investigate the quantization effects on the 
reconstruction processes.  

The remaining of this article is organized as follows. 
Section II includes the general CS model; the implementation 
of CS fPCG compression is presented in Section III in which 
the S-CS and the proposed QS-CS models are developed step 
by step. The simulation results are revealed in Section IV. 
Finally Section V holds the conclusions. 

 

II. CS MODEL 

Generally CS is a lossless compression method but 
sometimes to reach the compression goals it may be a lossy 
one. The CS is involved with two main stages; firstly, the 
signal compression stage and secondly, the signal 
reconstruction from the compressed one in the first stage. Both 
parts are elaborated below. 

A. Signal Compression 

Let’s suppose ( )x t  is the fPCG signal which is going to be 

compressed by CS method. If we define 1( ) n n

i iX x R   as 

the column vector contained the Nyquist samples of ( )x t , there 

is a potential to compressed this vector with CS method if the 
sparsity of X is confirmed. The measure to determine the level 
of sparsity of a vector is sparsity factor , which is defined as 

[17] 


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where 1X  and 2X  are the 1  and 2  norms of vector X  

respectively. It is noticeable that 0 1   in which 0   

illustrates that X  is quite non-sparse and 1   depicts that X  

is an absolute spares vector. To prove that X  is as sparse as is 
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needed,   should be restricted as 1k   , in which k  is the 

specialized minimum acceptable sparsity factor.  

In some cases X  does not satisfy the sparsity restrictions, 
thus it should be brought to another orthogonal space in which 
its coefficients are calculated as 


,
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.
n

j j i i

i

s x


  

where js  is the extension of  X  in the thj  dimension of the 

orthogonal space. If ,j i  for 1,i n  and js  contribute the 

thj  row of the Ψ (the orthogonal space transformation 

matrix) and thj element of S respectively, it would be  

 .S XΨ  

The orthogonal space should be selected so that S  is as sparse 

as is needed, meaning that 1Sk   , where  
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After being certain that S  is sparse enough, it is 

appropriate to be compressed by CS process. The compressor 

matrix 
m nΦ  is known as the sensing matrix in CS. The 

number of its rows is lower than number of its columns ( m n

) and is considered to compress S  according to 

  ,Y SΦ  

where vector Y with size 1m  is the compressed version of S

that can be efficiently stored or transmitted with lower cost 
rather than X  because m n . In CS, the best choice for the 

sensing matrix is the Φ  whose each elements are set with 
random values with white zero mean Gaussian distribution 
[18]. From (5) it is Y XΦΨ , thus by defining C ΦΨ  as 

the CS matrix, we have 

 .Y XC  

As the compressed vector Y is supposed to be saved or 
transmit, the Compression Rate (CR ) of the CS matrix, also is 

defined as 

 .
n

CR
m

  

which is the ratio of C ’s number of columns to its number of 

rows (the uncompressed vector size to compressed vector size 
ratio).  

B. Signal Reconstruction 

After compression of X into Y , for monitoring the patient 
heart beat rate in our system, it is necessary to reconstruct the 
original vector X  from Y . But rehabilitating n  elements of 

X  from m  elements of Y  is one of the crucial aspects of CS 

because m n . The bright side of CS reconstruction is the 

sparsity of S which guarantees the uniqueness of Ŝ , the 

reconstructed version of S . In the reconstruction step, it is 

assumed that Ŝ  is the sparsest vector which satisfies ˆY SΦ . 

According to [19], the efficient way to describe the 
reconstruction problem is the so-called Basis Pursuit (BP) 
problem expressed as 


1

ˆ arg{min }, subject to .
S

S S Y S Φ  

As is obvious that the BP is an optimization problem which 

is based on the minimization of the 
1
 norm of S . In other 

words, according to BP problem, the sparsity attribute of 

desired vector is considered as minimizing its 
1
 norm. The S

with the minimum 
1

 norm would be the answer of the 

reconstruction stage.  

So far, there are many numerical algorithms to solve the BP 
problem. The challenges of these algorithms are the speed of 
convergence and the calculation complexity [20]. One of the 
well-known fast algorithms is Projected Proximal Point 
Algorithm (ProPPA) [21] which is considered as the 

reconstruction algorithm in this article. After having Ŝ  from 

(8), the reconstructed version of fPCG signal X̂  would be 
available as  

 1 ˆˆ .X SΨ  

To investigate the performance of reconstruction, the 
Percentage Root mean-square Difference (PRD) is a 
measure for determining the reconstruction errors [22] 


ˆ ˆ( ) ( )

% 100 .
T

T

X X X X
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X X

 
  

To evaluate the performance of the implemented CS, the 

compression rate CR  from (7) and the reconstruction error 

PRD  are considered. The higher CR  along with lower PRD  
shows the better CS performance; and vice versa, the lower 
CR  and higher PRD  reveals the worst performance. Of 
course there would be a tradeoff between these two measures 
which should be specialized for particular purposes.  

 

III. CS METHOD FOR fPCG  SIGNAL COMPRESSION 

Because of especial features of fPCG signals, the CS 
method should be designed considering these features, in order 
to yields the best performance. Thus in [16] we first developed 
our Shuffled CS (S-CS) method and in this article we invent 
the Quantized S-CS (QS-CS) method to improve the 
performance of S-CS for compression of fPCG signals. 
Therefore, in this section we first present the S-CS and then 
develop the QS-CS adapted to compress fPCG signals. 

A. The S-CS Method 

Consider a typical fPCG signal with length 1024n   
which is sampled version of continues recorded signal with rate 
1 kHz, illustrated in Fig. 1. The sparsity factor of this signal is 

low ( 0.39  ). As is obvious, fPCG signal is not sparse 
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enough at time domain; thus, first of all, we are obligated to 
utilize the most appropriate orthogonal space in which the 
fPCG coefficients are as sparse as possible.  

According to [16] the Periodized Orthogonal (PO), Fast 
Analysis Operator for Periodized Orthogonal Wavelets 
Dictionary Normalized by Total Variation (POTV) and 
Discrete Cosine Transform (DCT) spaces provide the sparsest 
coefficients for the actual fPCG signal. Then, in this article we 
consider PO, POTV and DCT to build the Ψ (the space 
orthogonal matrix). 

Fig. 2 depicts the PO, POTV and DCT coefficients of the 
typical fPCG signal of Fig.1. The sparsity factors for PO, 

POTV and DCT coefficients are rather high (
0.58, 0.47 

 

and 0.66 respectively). It is clear because of larger   the 
resulted coefficients in orthogonal spaces are sparser than the 
original signal in time domain. 

On the other hand, it is disclosed that the fPCG coefficients 
in the mentioned spaces are structured sparse. In other words, 

all the coefficients aggregate into the one side of the vector .S   
From the reconstructor algorithms point of view, the 
structured-sparse coefficient is not acceptable [21]; therefore, 
to make the coefficient vector as an appropriate case for the 
reconstructor algorithms and having the best performance, we 
use a shuffler matrix Θ  which diffuses the coefficients 

through all the vector positions. Thus Θ is so that in which 

each row or column has just one non-zero element. This non-
zero element is set to 1 which is randomly posed in the matrix 
Θ . Eq (11) shows an example of shuffler matrix when 4n   

0 1 0 0

0 0 0 1
.

1 0 0 0

0 0 1 0

 
 
 
 
 
 

Θ   (11) 

The resulted coefficient vector after shuffling yields to 

 .S X ΘΨ  

By defining  Ψ ΘΨ  as the new orthogonal space, we have 

 .S X Ψ  



Figure 1.  Typical fPCG signal with length 1024n  , sample rate 1 kHz and 

the sparsity factor 0.39  . 

Fig. 3 shows the diffused vector S   for three mentioned 

spaces. It is clear that the resulted vector can be considered as a 
non-structured sparse vector which is the most prominent 
needed attribute for numerical BP problem solvers like ProPPA 

[21]. Now, according to (5), we have Y S Φ  which leads to 

Y X C          (14) 

where  C ΦΨ  is the new CS matrix with shuffler.  

For reconstruction of the compressed vector, according to 

(8), Ŝ   would be 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.  The PO (a), POTV (b) and DCT (c) coefficients of the typical 

fPCG signal in Fig. 1 with the sparsity factor 
0.58, 0.47 

and 0.66  

respectively. 
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Figure 3.  Diffused vector of fPCG signal coefficients in PO (a), POTV (b)  
and DCT (c) spaces. 


1

ˆ arg{min }, subject to .
S

S S Y S  Φ  
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Here because of the acknowledged sparsity of S  by 

shuffling, it is consented that Ŝ   would be the best possible 

reconstructed vector of S  . After finding Ŝ  , X̂  can be easily 

rehabilitated as 

1 ˆˆ .X S Ψ  

B. The Proposed QS-CS Method 

In the S-CS method in the previous section, as mentioned in 
(7), the compression rate, CR is defined as the ratio of size X

to the size of Y   ( /n m ). Here in the QS-CS method, to 

improve the CR of the S-CS, we implement a quantization 

over the Y   coefficients to limit the levels taken by the 
amplitude of the resulted vector. The quantized vector is 

defined as quY  

 qu ( ),LY f Y    (17) 

where Lf  is the quantizer function which enforces the input 

vector coefficients amplitudes into the maximum L  levels. 

Fig. 4 illustrates an example of Y   and quY  with 32m   and 

8L  . Subsequently the limited levels of quY coefficients, of 

course, need very fewer bits to be saved or transmit rather than 

Y  . Thus, the new definition of compression rate would be 

 ,
L

bn
CR

m b

    (18) 

in which b  and Lb  are the least bit number needed for 

presenting each element of Y  and each element of quY  

respectively. Suppose y   is an arbitrary element of Y  . If we 

present y  as 

 10 ry      (19) 

 

 

 

 

 

 

 

 

 

 

Figure 4.  An example of original and quantized coefficients for 32m  and 

8L  . 

in which   and r are integer numbers. Therefore, according to 
the computation scales 

 2ceil(log (max( ) 10 )) 1,rb y      (20) 

where the operator ceil(.)  rounds the inputs to the nearest 

integer greater than or equal to the input. The term max( )y 

means the maximum possible value of y  . Also the term 1

presents the bit containing the sign of y  . After quantization, 

the needed bit for presenting each element of quantize vector 

quY  would be  

 2log ( ).Lb L   (21) 

On the other hand, after quantization, the BP problem for 
reconstruction is stated as   

 qu qu1

ˆ arg{min }, subject to .
S

S S Y S  Φ   (22) 

Also to find the time domain signal according to (16) we 
have 

 1

qu qu
ˆˆ .X S Ψ   (23) 

 In spite of the quantization benefits over the value of CR

(because Lb b ), it imposes a noise into the reconstruction 

process and leads to the increase of the .PRD For instance, if 

L  is a small number, the CR  rises significantly; in contrast, 

because of the distortion of quY in comparison with Y  , the 

PRD of the reconstructed signal would be raised too which 
may leads to refuse the results of the  proposed method. 

 To investigate the effect of quantization noise into the 
reconstructed signal, let’s define the quantization noise as  

 qu .YE Y Y    (24) 

Also, we suppose Y SE EΦ where SE is the quantization 

noise effect contaminating the uncompressed coefficients. On 
the other hand, the BP problem of (22) by employing the 

transformation ,SS S E  is rewritten as 

 
qu 1

qu

ˆ arg{min },

subject to ( ).

S
S E

S

S S E

Y S E


  

 Φ
  (25) 

Since for each two arbitrary vectors S  and SE , we always 

have 
1 1 1S SS E S E   , the problem of (25) is broken 

into two simpler optimization problems 

qu qu1

1 1,

1

1

ˆ arg{min }, subject to ( )

arg{min( )}, subject to ( )

arg{min }, subject to

arg{min }, subject to . (26)

S

S

S

S S
S E

S Y S
S E

S

S Y S
E

S S E Y S E

S E Y E S E

S Y S

E E E


    

    

 

 

Φ

Φ

Φ

Φ

  

The first term of the resulted problem is similar to BP 
problem of (15) (which leads to the sparsest signal) and the 
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second term, 
1

arg{min }, subject to ,
S

S Y S
E

E E EΦ reveals 

that the sparsest additive noise vector SE  contaminates the 

reconstructed vector 
quŜ  . Based on this argument, in the 

solution of BP problem of (22), the contaminating quantization 

noise, YE  would have the minimum possible effect on the 

resulted 
quŜ  . Therefore, in the proposed QS-CS method the 

quantization process of (17) influences on the reconstruction 
PRD  would be insignificant for appropriate value of L . In 
next section, the simulation results, also, confirm this 
argument. 

 

IV. SIMULATION RESULTS 

In this part we implement the S-CS and proposed QS-CS 
methods, to compress and reconstruct the fPCG signals and 
survey the performance of these methods over PO, POTV and 
DCT spaces. It is mentionable that the database which the 
fPCG signals are adopted is [23] which contains variety of 
fPCG signals with different Signal to Noise Ratios (SNR). In 
these simulations the fPCG signals with duration 60 minutes 
and SNR= -10, -8 and -4 dB are considered and the presented 
results of this section are the average outcomes for these three 
SNRs. The shuffler matrix is organized as discussed before 
with non-zero elements distributed with uniform probability 
distribution function. Also the 256 1024  sensing matrix is 

built with white zero mean Gaussian elements. It is noticeable 
that after making shuffler and sensing matrix, both of them are 
fixed in the system with no changes during compressing and 
reconstructing processes. In this section, the reconstruction 
algorithm to solve the BP problem is ProPPA which has a very 
fast and low complexity convergence [21]. When using this 
algorithm, more sparsity of signals results lower reconstruction 
errors.  

For the S-CS, according to the sensing matrix size ( m n ),
4CR  . In addition, in our simulations empirically we used 

9b   bits (because we consider max( ) 16y    and 1r  ) to 

present each element of Y   and chose the number of 

quantization levels as 8L  ; thus 3Lb   bits. Consequently, 

for the QS-CS method 12CR  . As is obvious, in QS-CS the 

CR is significantly greater than that of S-CS. Also to 

investigate the performance of the S-CS and QS-CS methods, 

we pass the normalized vector S   coefficients form a threshold 

[16]. Since the coefficients lower that threshold are set to zero, 

larger threshold leads to sparser resulted S  . On the other 

hand, great threshold may eliminates the significant 

coefficients of S  and causes to the wrecked reconstructed 

signal. Thus, the value of threshold adjusts a crucial tradeoff 
between sparsity and losing the significant coefficients during 
CS process which both of them affect the PRD .  

Fig. 5, Fig. 6 and Fig. 7 compare the reconstruction PRD  
for S-CS and QS-CS versus the value of threshold (T ), when 
using PO, POTV and DCT spaces respectively. Firstly, as is 
obvious, in each three of these figures the PRD ’s of S-CS and 
QS-CS are approximately equal, which proves that the 

quantization noise has the least possible effect on the 
reconstruction process. Secondly, it is clear that for each space 
when 0T  , the S-CS and QS-CS methods have rather high 

PRD . By increasing T , the PRD  decreases to a certain point 
with the minimum PRD  for each space. This threshold with 
the minimum PRD  is considered as the optimal threshold (

optT ). As mentioned before, the reason of error degradation is 

the more sparsity coming from the elimination of unnecessary 
coefficients by passing through the threshold. This 
phenomenon improves the performance of ProPPA. After the 

optT  point, by increasing T  the PRD  start to increase again. 

This occurrence comes from the fact that large T ’s eliminates 

the significant coefficients of S   from (13) and leads to the 

threshold passed coefficients do not resemble the original 
coefficients and causes the damages on final reconstruction. 

Therefore, optT  is the best choice for the threshold in the S-CS 

and QS-CS methods. Meanwhile, Table. 1 illustrates the CR ,   

optT and the related PRD  for S-CS and QS-CS methods in 

three spaces. 

Also, note that the amount of needful bits to present the 
uncompressed fPCG signal with 60 minutes duration and 1 
kHz sample rate, is 30.9 Mbit, for the compressed signals by S-
CS and QS-CS it is 7.72 Mbit and 2.57 Mbit respectively. It is 
clear that the QS-CS with a little PRD , is able to diminish the 
burden of necessary bits to save or transmit the fPCG signal 
significantly. 

 

V. CONCLUSIONS 

In this article we developed the QS-CS method for 
compression of fPCG signals. This method is based on 
previous S-CS method in which sparsity of the compressing 
signal is the vital attribute. To provide this sparsity, the time 
domain signal is brought into the especial orthogonal spaces in 
which the signal coefficients are sparse enough. For more 
compression rate, the uncompressed coefficients are passed 
form an optimal threshold that makes them sparser. This more 
sparsity guarantees the accurate reconstruction of compressed 
signal when using greater compression rate. In QS-CS, to reach 
the extremely more compression rate, we also imposed a 
quantization on the compressed signal to adjust them into 
limited allowed amplitudes. We showed that because of the 
nature of reconstruction optimization problem, the quantization 
noise has the least impact on the final reconstructed signal. 
Therefore, on one hand, the QS-CS provides significant more 
compression rate rather than S-CS; on the other hand, its 
reconstruction error is approximately equal to that of the S-CS.  

TABLE I.  THE VALUE OF CR , optT  AND MINIMUM PRD  OF PO, POTV AND 

DCT SPACES ACCORDING TO S-CS AND QS-CS METHODS FOR FPCG SIGNAL. 

 CR Topt  PRD 

CS method 

Space 
S-CS QS-CS S-CS QS-CS S-CS QS-CS 

PO 4 12 0.2 0.2 19.44 19.45 

POTV 4 12 0.2 0.2 21.29 21.31 

DCT 4 12 0.3 0.3 32 32.54 
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Figure 5.  The fPCG signal reconstruction PRD of S-CS and QS-CS 

methods versus threshold, using  PO space. 

 

 

 

 

 

 

 

 

 

Figure 6.  The fPCG signal reconstruction PRD of S-CS and QS-CS 

methods versus threshold, using  POTV space. 

 

 

 

 

 

 

 

 

 

Figure 7.  The fPCG signal reconstruction PRD of S-CS and QS-CS 

methods versus threshold, using  DCT space 
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