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Abstract- Median of Median is an algorithm for selecting the 
k

th 
largest element in an unordered list, having worst case linear 

time complexity [1]. It is based on the Hoare’s selection 
algorithm also called quickselect algorithm [6]. The Median of 
Median algorithm uses an asymptotically optimal approximate 
median selection algorithm to make an asymptotically optimal 
general search algorithm. It finds the approximate median in 
linear time which is then used as pivot in the quickselect 
algorithm. This approximate median can be used as pivot in 
Quicksort, giving an optimal sorting algorithm that has worst-
case complexity O(n log n) [2].  

This paper proposes variation in the above mentioned 
implementation technique for the median selection problem to 
find the Median of Medians and the value obtained is further 
used to guarantee a good pivot for the Quicksort algorithm. 
The result of the experiment performed show that the strategy 
proposed has worst-case complexity O(n log n) for Quicksort.  
Graphs were also plotted for the usual Quicksort function and 
the Quicksort function that uses the proposed median of 
median (PMOM) as pivot for relatively large values of size of 
array and results were compared. These confirm that proposed 
algorithm indeed has worst-case complexity O(n log n) for 
Quicksort. 

Keywords- Median of Median, Quicksort, Partition, Median 

Selection 

 

I. INTRODUCTION 

Median is the middle value in a data set. Median selection 
is a problem that can be considered a special case of selecting 
the i

th
 smallest element in an ordered set of n elements, when 

i=⌈n/2⌉. An approach to solve this problem could be to sort the 
list and then choose the i

th
 element. This could be using any 

sorting algorithm such as - Heapsort that has the worst case 
upper bound as O(n log n), Quicksort that has an expected 
running time O(n log n) though its running time is O(n

2
) in the 

worst case. Once the data values are sorted, it takes O(1) time 
to find the i

th
 order statistics. Using an optimal sorting 

algorithm, the aforesaid approach gives complexity of O(n log 
n) as upper bound for selecting i

th
order statistics [2].  

The problem of selecting the i
th
smallest element from an 

unsorted list of n elements has been solved in linear time by 
algorithms such as Quickselect [6], BFPRT (also called 
Median of Median Algorithm) [1], Introselect [7] and using 
Softheaps [8]. The i

th 
order statistics selection implies- given a 

set of n unordered numbers we find the i
th

 smallest number 

where (i is an integer between 1 and n). An interesting 
application of these selection algorithms is to select the median 
and then use it as pivot for balanced Quicksort. For instance, a 
good pivot is chosen using the BFPRT algorithm and used as 
pivot for partitioning in Quicksort resulting in worst-case O(n 
log n) run time rather than the usual O(n

2
). 

 

II. STATE OF ART 

The technique of finding the median of medians in [1] and 
strives to achieve the goal of finding the median of a given list 
in O(n) in the worst case.  

The idea behind i
th
 order statistics selection is in Fig.1. It is 

a divide-and-conquer approach to solve the selection problem.  

 

 
Figure 1.  ith Order Statistics Selection 

 

In quicksort, if the chosen pivot is the largest or the 
smallest element in the list (in each iteration), it results as worst 
case performance of O(n

2
). When any random element is 

chosen as pivot, it results in expected linear time performance, 
but a worst case scenario of quadratic time is possible [2].  

An important part of the algorithm in Fig. 1 is the choice of 
pivot element. To guarantee the linear running time of O(n), 
the strategy used for choosing the pivot must guarantee that the 
chosen pivot will partition the list into two sublists of relatively 
comparable size. Median of the values in the list could be the 
optimal choice. Thus, if median can be found in linear time 
then it is possible to have an optimal solution to the general 
selection problem. The Median-of-Medians algorithm chooses 
its pivot in the following intelligent manner [1] [2]. 

1. Any one element is selected as the pivot. 

2. The list is divided into two sublists, the first 

containing all elements smaller than the pivot 

element and the second containing all elements 

greater than the pivot. 

3. When searching for ith order statistics. Let the index 

of the pivot in this partitioned list be k. If element at 

position k=i, then pivot is returned. 

4. If i<k, recurse on the sub-list of elements smaller 

than the pivot, looking for the ith smallest element. 

5. If i>k, recurse on the sub-list of elements larger than 

the pivot, looking for the (i−k−1)
th

 smallest element. 
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Figure 2.  Median-of-Medians for ith order statistics 

 

To visualize why the algorithm in Fig. 2 [1-2] works 
consider Fig.  3, 4 and 5.   

 

 
Figure 3.   

 

Let b1 through b9 be the groups of 5 elements each and their 
medians after sorting be in at yellow positions in Fig.3[3]. 
Sorting within the groups, all elements above the median are 
greater than the median and the ones below it are less than the 
median as shown in Fig. 4[3]. The Median-of-Medians is 

marked as a ★ in the Fig. 3, 4 and 5. 

 

 
Figure 4.   

 

Thereafter the medians in yellow positions in groups b1 

through b9 are sorted and the entire groups are repositioned 
accordingly as shown in Fig 4. 

 

 
Figure 5.   

Logically interpreting the arrangement in Fig. 4 leads to 
Fig. 5[3] where the elements in the yellow positions to the left 
of the median of medians (MOM), are certainly less than the 
MOM and the elements in the pink positions to the right of the 
MOM are certainly greater than the MOM. Nothing can clearly 
be said about the grey elements. 

So, MOM (★) is larger than 3/5 of the elements from 

(roughly) the first half of the blocks. And thus, ★ larger than 

about 3/10 of the total elements. On the same lines ★  is 

smaller than about 3/10 of the total elements. So the scheme 
guarantees a 30:70 split [2]. 

 

 
Figure 6.  Median-of-Medians Algorithm 

 

Analyzing the algorithm in Fig. 6[2], mathematically, there 
are ⌈n/5⌉ groups, including the leftover elements. Half of these, 
that is, ⌈⌈n/5⌉/2⌉ groups have 3 elements greater than or equal 

to the MOM(★). The group containing MOM and the last 

group (that may or may not have 5 elements) are special cases. 

Hence each of the ⌈⌈n/5⌉/2⌉–2 groups; except the last and the 

one containing the median; contributes three elements greater 

than MOM(★).  

Let X be the number of elements greater than MOM(★), 

then,  

X ≥ 3(⌈⌈n/5⌉/2⌉–2) 

≥ 3(n/10–2) 

= 3n/10–6 

Our recursive call can be on a sub array of size 

n-X≤ n-(3n/10-6) 

≤ 7n/10 + 6 

Thus the recurrence relation for the above algorithm is: 

T(n) ≤ c if n ≤ 100   (1) 

T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn otherwise 

The solution to this can be proved to be O(n),  [2]. 

The above linear-time selection algorithm runs in time 
O(n), but there is a huge constant factor hidden in it. This has 
basically two reasons: (i) work done by each call is large that 
is, finding the median of each block requires nontrivial work; 
(ii) problem size decays slowly across levels; each layer is 

1. Divide the entire list into sublists each of length five. 

(The last sublist may have a length less than five.) 

2. Sort each of the above sublists and determine their 

median. 

3. Use the Median-of-Medians algorithm to recursively 

determine the median of the set of all medians from 

step 2.  

4. Use the median from step 3 as the pivot to divide the 

list for finding the ith order statistics as this 

guarantees a good split. 

1. Split the input into blocks of size 5 in time Θ(n). 

2. Compute the median of each block non-recursively. 

3. Takes time Θ(n), since there are about n/5 blocks. 

4. Recursively invoke the algorithm on this list of n/5 

blocks to get a pivot. 

5. Partition using that pivot in time Θ(n).  

6. Make up to one recursive call on an input of size at 

most (n - 3n/10) = 7n/10 elements. 
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roughly only 10% smaller than its predecessor. The first non-
trivial lower bound for the problem was presented, in 1973, by 
Blum et al.[1] using an adversary argument. This result was 
improved in 1976 by Schnhage, Paterson, and Pippinger [4] 
who presented an algorithm that uses only 3n+o(n) 
comparisons. This remained the best algorithm for almost 20 
years, until Dor and Zwick [5] reduced the number of 
comparisons a bit further to 2.95n+o(n).  

The main objective of the proposed work is to solve the 
problem in O(n) behavior without a large constant factor. The 
proposed paper presents a variant of MOM algorithm hereafter 
called the PMOM Algorithm by considering more 
sophisticated approaches to this problem in this paper. 

 

III. PROPOSED ALGORITHM 

The proposed variation in this paper, aims at reducing the 
time to find the Median of Medians, and then the value 
obtained is further used to guarantee a good pivot for the 
Quicksort algorithm where an important part of the algorithm 
the choice of pivot for partition. To guarantee the linear 
running time of O(n), the strategy used for choosing the pivot 
must  guarantee that the chosen pivot will partition the list into 
two sublists of relatively comparable size. Thus, Median of the 
values in the list could be the optimal choice. The proposed 
algorithm finds the median for each group of 5 elements, and 
then moves these medians into a block of values atthe 
beginning of the array. Putting the medians in a block 
simplifies further operations and increases their locality of 
reference hence improving the constant factor. Thereafter, the 
proposed algorithm uses select it to identify the median of 
these median-of-5’s. 

Functions used in the proposed approach are as in Fig. 7 
through Fig. 9. The select algorithm in Fig. 7 permutes the 
array to place the k

th
 largest value in a[k]. It is provably worst-

case linear. As in MOM, instead of relying on fate,  the 
proposed algorithm seeks to find a good pivot, a[MOMIdx],  
which always makes each partition at least 3/10 the size of the 
array. To do this, the proposed algorithm first divides the array 
up into small groups of 5 elements each. It then uses the 
median5 function described in Fig. 8 to find the median for 
each, and then moves these medians into a block of values at 
the beginning of the array. As already stated putting the 
medians in a block simplifies further operations and increases 
their locality of reference hence improving the constant factor. 
Having done this, the proposed algorithm uses select itself to 
identify the median of these median-of-5’s, and in the proposed 
paper this will be the pivot in Quicksort. 

 

 

 

 

Figure 7.  Functions used in the proposed approach 

 

 

void select(int a[ ],  int size,  int k) 

 

{ 

 

if (size < 5)   //insertion sort 

 

{ 

 

for ( i=0; i<size; i++) 

for ( j=i+1; j<size; j++) 

if (a[j] < a[i]) 

swap(&a[i],  &a[j]); 

return;  

 

} 

else   

{  

intgroupNum = 0; 

 

int* group = a; 

 

for(;groupNum*5<=size-5;group+=5,groupNum++)  

 

{  

 // gets medians of all groups to beginning of array 

    swap(group[median5(group)],  a[groupNum]);  

} 

 

intnumMedians = size/5;  // total number of groups or medians 

 

intMOMIdx = numMedians/2;// index of median of medians 

 

select(a,  numMedians,  MOMIdx);  

 

intnewMOMIdx = partition(a,  size,  MOMIdx); 

 

if (k != newMOMIdx)  

{ 

   if (k <newMOMIdx)  

{ 

        select(a,  newMOMIdx+1,  k);    

}  

else/* if (k >newMOMIdx) */  

 { 
    

select(a+newMOMIdx+1,size-newMOMIdx-1,k-newMOMIdx -1); 

  

} 

} 

} 

}     
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Figure 8.  Fast Median-of-5 Function 

 

The function in Fig. 8 locates the median of 5 values. The 
function loads the five array values into five register variables. 
This function is called several times. Ideally, if this function is 
written in assembly language the constant factors can be further 
improved. 

The partition algorithm in Fig. 9 works by positioning two 
pointers at the beginning of the array, the load pointer and the 
store pointer. The load pointer advances through the array, 
finding all values less than the pivot value and swapping them 
into the initial segment of the array.  

 
Figure 9.   

 

The proposed algorithm uses the proposed Median of 
Median algorithm (PMOM) in Fig. 6[2] to find a good pivot in 
Quicksort. Hence, when the Quicksort as in Chapter 7[2] uses 
PMOM to find pivot for very large array sizes is able to 
guarantee a worst case running time of O(n log n). 

 

IV. OBSERVATIONS 
 

X= ( x | x < m and x ϵ S} 
Pivot = 

m, m ϵ S 
Y= ( y | y > m and x ϵ S} 

S 

Figure 10.   

 

Even when any other element from S is  chosen as the 
pivot,  the algorithm works correctly, but looking at it closely, 
it can be found that the worst-case running time depends on 
|X|: the size of the set X and |Y|  : the size of the set Y. Let 
T(|S|) denote the worst-case running time of the algorithm on 
the list S, then 

T(|S|) = T(|S|/5) + O(|S|) + max {T(|X|), T(|Y|)}          (2) 

As discussed in the section above, (refer Equation 1) that if 
m the pivot is the “median of medians”, both |X| and |Y| are at 
most 3|S|/4.  

T(n)=T(n/5) + O(n) + T(3n/4)            (3) 

From (1) 

T(n) = O(n) + T(n/5) +T(7n/10) 

Solving the above using substitution, Guess T(n) < C*n 

=>  T (n)= p*n + T (n/5) + T (7n/10) 

=>  C*n >= T(n/5) +T(7n/10) + p*n 

=>  C>=  C*n/5+ C*7*n/10 + p*n 

=>  C>= 9*C/10 +p 

=>  C/10 >= p  

=>  C>= 10*p  

int median5(T* a) 

 

{  

// Load array values for 5 elements in CPU registers 

 registerint a0 = a[0]; 

registerint a1 = a[1]; 

registerint a2 = a[2]; 

registerint a3 = a[3]; 

registerint a4 = a[4]; 

 

/*Perform insertion sort on the five registers, Gives median 

value in a2 */ 

 

if (a1 < a0) 

swap(a0,  a1); 

if (a2 < a0) 

swap(a0,  a2); 

if (a3 < a0) 

swap(a0,  a3); 

if (a4 < a0) 

swap(a0,  a4); 

if (a2 < a1) 

swap(a1,  a2); 

if (a3 < a1) 

swap(a1,  a3); 

if (a4 < a1) 

swap(a1,  a4); 

if (a3 < a2) 

swap(a2,  a3); 

if (a4 < a2) 

swap(a2,  a4); 

/* Find and return index of median of the 5 elements */ 

if (a2 == a[0]) 

return 0; 

if (a2 == a[1]) 

return 1; 

if (a2 == a[2]) 

return 2; 

if (a2 == a[3]) 

return 3; 

if (a2 == a[4]) 

return 4;} 

int partition(T a[],  int size,  int pivot) 

 { 

intpivotValue = a[pivot]; 

swap(a[pivot],  a[size-1]); 

intstorePos = 0; 

for(intloadPos=0; loadPos< size-1; loadPos++)  

{ 

if (a[loadPos] <pivotValue)  

{ 

swap(a[loadPos],  a[storePos]); 

storePos++; 

} 

} 

swap(a[storePos],  a[size-1]); 

returnstorePos; } 
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Since it is possible to find such a constant p it implies 

T(n) = O(n) 

Using a similar logic it can be proved that T(n)=O(n) for 
(3). 

The experiment was done using three types of lists say L1, 
L2, L3 where a list of type L1 has all elements arranged in 
descending order, list of type L2 has all elements arranged in 
ascending order and list of type L3 has elements in random 
order.  

Three sets of lists of type L1, L2, L3 were used as input for 
the proposed experiment. Exactly the same sets of lists of type 
L1, L2, L3 were given as input to  

(i) Quicksort algorithm using Hoare’s partition [2] to find 
pivot and sort the list. Hoare’s partition uses the first element 
of the list as the pivot 

(ii) Quicksort algorithm using PMOM to find the pivot for 
partition and sort the lists.  

The time taken by the two variants for Quicksort discussed 
above was measured by the system clock in terms difference 
between the start time and finish time for the program while no 
other programs were running on the system. Let the difference 
between the two time values be x, then it is termed as x ticks.  

Readings of execution time were recorded for the two 
variants of Quicksort for lists of type L1, L2 and L3 and graphs 
were plotted to study the variation in execution time. 

Case 1: List of type L1: Elements of set S are arranged in 
descending order. The data table for the readings for Case 1 is 
depicted in Fig. 11. The results for Quicksort using Hoare’s 
partition are plotted as a red line and the results of Quicksort 
using PMOM to find the pivot for partition are plotted as a blue 
line graph in Fig. 12. The blue line graph shows an O(n log n) 
curve. The red line graph shows an O(n^2) curve which is the 
worst case for Quick sort.  

 

Number of Elements PMOM Hoare 

500 0 1 

1000 1 2 

2000 2 16 

3000 4 32 

4000 6 48 

5000 8 63 

10000 18 190 

20000 37 703 

25000 45 1121 

30000 51 1551 

40000 68 2749 

45000 73 3472 

47000 75 3809 

Figure 11.   

 
Figure 12.   

 

Case 2: List of type L2: Elements of set S are arranged in 
ascending order. The data table for the readings for Case 2 is 
depicted in Fig. 13. The blue line in Fig. 14 shows results of 
Quicksort using PMOM while the red line graph shows 
Quicksort using Hoare’s partition. The blue line graph shows 
an O(n log n) curve. The red line graph shows an O(n^2) curve 
which is the worst case for Quicksort.  

 

Number of Elements PMOM Hoare 

1000 1 4 

2000 2 13 

3000 3 31 

4000 4 43 

5000 8 47 

10000 16 153 

20000 31 677 

25000 39 968 

30000 43 1433 

40000 58 2637 

45000 61 3334 

47000 63 3380 

Figure 13.   

 

 

Figure 14.   
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Case 3: List of type L3: Elements of set S are in random 
order. The data table for the readings for Case 3 is depicted in 
Fig. 15 and the blue line in Fig. 16 shows results of Quicksort 
using PMOM while the red line graph shows Quicksort using 
Hoare’s partition. Both the red and the blue line graph shows 
an O(n log n) curves. 

 

Number of Elements PMOM Hoare 

500 0 0 

1000 0 1 

2000 2 3 

3000 3 4 

4000 3 5 

5000 8 8 

10000 16 19 

20000 30 43 

25000 38 46 

30000 42 55 

40000 57 62 

45000 62 65 

47000 63 71 

50000 77 76 

100000 122 123 

Figure 15.   

 

 

Figure 16.   

 

IV. CONCLUSION 

The results of the experiment done in this paper prove when 
the PMOM algorithm is used to find the pivot; that is, when the 

“median of medians” is chosen as the pivotal element by the 
partition in quick sort it helps to limit the worst-case of the 
problem. It is evident from the graphs in the previous sections 
that, Quicksort using PMOM gives a time complexity of O(n 
log n) even in the worst case where as Quicksort using Hoare’s 
partition runs in O(n^2) time in for the worst-case inputs. 
When the elements are in random order the Quicksort using 
Hoare’s partition and Quicksort using PMOM both show a 
similar behavior giving a time complexity of O(n log n). 
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