

28

International Journal of

Science and Engineering Investigations vol. 5, issue 56, September 2016

ISSN: 2251-8843

Quicksort Using Median of Medians as Pivot

Aviral Khattar
HCL Technologies

(aviral92@gmail.com)

Abstract- Median of Median is an algorithm for selecting the
k

th
largest element in an unordered list, having worst case linear

time complexity [1]. It is based on the Hoare’s selection
algorithm also called quickselect algorithm [6]. The Median of
Median algorithm uses an asymptotically optimal approximate
median selection algorithm to make an asymptotically optimal
general search algorithm. It finds the approximate median in
linear time which is then used as pivot in the quickselect
algorithm. This approximate median can be used as pivot in
Quicksort, giving an optimal sorting algorithm that has worst-
case complexity O(n log n) [2].

This paper proposes variation in the above mentioned
implementation technique for the median selection problem to
find the Median of Medians and the value obtained is further
used to guarantee a good pivot for the Quicksort algorithm.
The result of the experiment performed show that the strategy
proposed has worst-case complexity O(n log n) for Quicksort.
Graphs were also plotted for the usual Quicksort function and
the Quicksort function that uses the proposed median of
median (PMOM) as pivot for relatively large values of size of
array and results were compared. These confirm that proposed
algorithm indeed has worst-case complexity O(n log n) for
Quicksort.

Keywords- Median of Median, Quicksort, Partition, Median

Selection

I. INTRODUCTION

Median is the middle value in a data set. Median selection
is a problem that can be considered a special case of selecting
the i

th
 smallest element in an ordered set of n elements, when

i=⌈n/2⌉. An approach to solve this problem could be to sort the
list and then choose the i

th
 element. This could be using any

sorting algorithm such as - Heapsort that has the worst case
upper bound as O(n log n), Quicksort that has an expected
running time O(n log n) though its running time is O(n

2
) in the

worst case. Once the data values are sorted, it takes O(1) time
to find the i

th
 order statistics. Using an optimal sorting

algorithm, the aforesaid approach gives complexity of O(n log
n) as upper bound for selecting i

th
order statistics [2].

The problem of selecting the i
th
smallest element from an

unsorted list of n elements has been solved in linear time by
algorithms such as Quickselect [6], BFPRT (also called
Median of Median Algorithm) [1], Introselect [7] and using
Softheaps [8]. The i

th
order statistics selection implies- given a

set of n unordered numbers we find the i
th

 smallest number

where (i is an integer between 1 and n). An interesting
application of these selection algorithms is to select the median
and then use it as pivot for balanced Quicksort. For instance, a
good pivot is chosen using the BFPRT algorithm and used as
pivot for partitioning in Quicksort resulting in worst-case O(n
log n) run time rather than the usual O(n

2
).

II. STATE OF ART

The technique of finding the median of medians in [1] and
strives to achieve the goal of finding the median of a given list
in O(n) in the worst case.

The idea behind i
th
 order statistics selection is in Fig.1. It is

a divide-and-conquer approach to solve the selection problem.

Figure 1. ith Order Statistics Selection

In quicksort, if the chosen pivot is the largest or the
smallest element in the list (in each iteration), it results as worst
case performance of O(n

2
). When any random element is

chosen as pivot, it results in expected linear time performance,
but a worst case scenario of quadratic time is possible [2].

An important part of the algorithm in Fig. 1 is the choice of
pivot element. To guarantee the linear running time of O(n),
the strategy used for choosing the pivot must guarantee that the
chosen pivot will partition the list into two sublists of relatively
comparable size. Median of the values in the list could be the
optimal choice. Thus, if median can be found in linear time
then it is possible to have an optimal solution to the general
selection problem. The Median-of-Medians algorithm chooses
its pivot in the following intelligent manner [1] [2].

1. Any one element is selected as the pivot.

2. The list is divided into two sublists, the first

containing all elements smaller than the pivot

element and the second containing all elements

greater than the pivot.

3. When searching for ith order statistics. Let the index

of the pivot in this partitioned list be k. If element at

position k=i, then pivot is returned.

4. If i<k, recurse on the sub-list of elements smaller

than the pivot, looking for the ith smallest element.

5. If i>k, recurse on the sub-list of elements larger than

the pivot, looking for the (i−k−1)
th

 smallest element.

International Journal of Science and Engineering Investigations, Volume 5, Issue 56, September 2016 29

www.IJSEI.com Paper ID: 55616-05 ISSN: 2251-8843

Figure 2. Median-of-Medians for ith order statistics

To visualize why the algorithm in Fig. 2 [1-2] works
consider Fig. 3, 4 and 5.

Figure 3.

Let b1 through b9 be the groups of 5 elements each and their
medians after sorting be in at yellow positions in Fig.3[3].
Sorting within the groups, all elements above the median are
greater than the median and the ones below it are less than the
median as shown in Fig. 4[3]. The Median-of-Medians is

marked as a ★ in the Fig. 3, 4 and 5.

Figure 4.

Thereafter the medians in yellow positions in groups b1

through b9 are sorted and the entire groups are repositioned
accordingly as shown in Fig 4.

Figure 5.

Logically interpreting the arrangement in Fig. 4 leads to
Fig. 5[3] where the elements in the yellow positions to the left
of the median of medians (MOM), are certainly less than the
MOM and the elements in the pink positions to the right of the
MOM are certainly greater than the MOM. Nothing can clearly
be said about the grey elements.

So, MOM (★) is larger than 3/5 of the elements from

(roughly) the first half of the blocks. And thus, ★ larger than

about 3/10 of the total elements. On the same lines ★ is

smaller than about 3/10 of the total elements. So the scheme
guarantees a 30:70 split [2].

Figure 6. Median-of-Medians Algorithm

Analyzing the algorithm in Fig. 6[2], mathematically, there
are ⌈n/5⌉ groups, including the leftover elements. Half of these,
that is, ⌈⌈n/5⌉/2⌉ groups have 3 elements greater than or equal

to the MOM(★). The group containing MOM and the last

group (that may or may not have 5 elements) are special cases.

Hence each of the ⌈⌈n/5⌉/2⌉–2 groups; except the last and the

one containing the median; contributes three elements greater

than MOM(★).

Let X be the number of elements greater than MOM(★),

then,

X ≥ 3(⌈⌈n/5⌉/2⌉–2)

≥ 3(n/10–2)

= 3n/10–6

Our recursive call can be on a sub array of size

n-X≤ n-(3n/10-6)

≤ 7n/10 + 6

Thus the recurrence relation for the above algorithm is:

T(n) ≤ c if n ≤ 100 (1)

T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn otherwise

The solution to this can be proved to be O(n), [2].

The above linear-time selection algorithm runs in time
O(n), but there is a huge constant factor hidden in it. This has
basically two reasons: (i) work done by each call is large that
is, finding the median of each block requires nontrivial work;
(ii) problem size decays slowly across levels; each layer is

1. Divide the entire list into sublists each of length five.

(The last sublist may have a length less than five.)

2. Sort each of the above sublists and determine their

median.

3. Use the Median-of-Medians algorithm to recursively

determine the median of the set of all medians from

step 2.

4. Use the median from step 3 as the pivot to divide the

list for finding the ith order statistics as this

guarantees a good split.

1. Split the input into blocks of size 5 in time Θ(n).

2. Compute the median of each block non-recursively.

3. Takes time Θ(n), since there are about n/5 blocks.

4. Recursively invoke the algorithm on this list of n/5

blocks to get a pivot.

5. Partition using that pivot in time Θ(n).

6. Make up to one recursive call on an input of size at

most (n - 3n/10) = 7n/10 elements.

International Journal of Science and Engineering Investigations, Volume 5, Issue 56, September 2016 30

www.IJSEI.com Paper ID: 55616-05 ISSN: 2251-8843

roughly only 10% smaller than its predecessor. The first non-
trivial lower bound for the problem was presented, in 1973, by
Blum et al.[1] using an adversary argument. This result was
improved in 1976 by Schnhage, Paterson, and Pippinger [4]
who presented an algorithm that uses only 3n+o(n)
comparisons. This remained the best algorithm for almost 20
years, until Dor and Zwick [5] reduced the number of
comparisons a bit further to 2.95n+o(n).

The main objective of the proposed work is to solve the
problem in O(n) behavior without a large constant factor. The
proposed paper presents a variant of MOM algorithm hereafter
called the PMOM Algorithm by considering more
sophisticated approaches to this problem in this paper.

III. PROPOSED ALGORITHM

The proposed variation in this paper, aims at reducing the
time to find the Median of Medians, and then the value
obtained is further used to guarantee a good pivot for the
Quicksort algorithm where an important part of the algorithm
the choice of pivot for partition. To guarantee the linear
running time of O(n), the strategy used for choosing the pivot
must guarantee that the chosen pivot will partition the list into
two sublists of relatively comparable size. Thus, Median of the
values in the list could be the optimal choice. The proposed
algorithm finds the median for each group of 5 elements, and
then moves these medians into a block of values atthe
beginning of the array. Putting the medians in a block
simplifies further operations and increases their locality of
reference hence improving the constant factor. Thereafter, the
proposed algorithm uses select it to identify the median of
these median-of-5’s.

Functions used in the proposed approach are as in Fig. 7
through Fig. 9. The select algorithm in Fig. 7 permutes the
array to place the k

th
 largest value in a[k]. It is provably worst-

case linear. As in MOM, instead of relying on fate, the
proposed algorithm seeks to find a good pivot, a[MOMIdx],
which always makes each partition at least 3/10 the size of the
array. To do this, the proposed algorithm first divides the array
up into small groups of 5 elements each. It then uses the
median5 function described in Fig. 8 to find the median for
each, and then moves these medians into a block of values at
the beginning of the array. As already stated putting the
medians in a block simplifies further operations and increases
their locality of reference hence improving the constant factor.
Having done this, the proposed algorithm uses select itself to
identify the median of these median-of-5’s, and in the proposed
paper this will be the pivot in Quicksort.

Figure 7. Functions used in the proposed approach

void select(int a[], int size, int k)

{

if (size < 5) //insertion sort

{

for (i=0; i<size; i++)

for (j=i+1; j<size; j++)

if (a[j] < a[i])

swap(&a[i], &a[j]);

return;

}

else

{

intgroupNum = 0;

int* group = a;

for(;groupNum*5<=size-5;group+=5,groupNum++)

{

 // gets medians of all groups to beginning of array

 swap(group[median5(group)], a[groupNum]);

}

intnumMedians = size/5; // total number of groups or medians

intMOMIdx = numMedians/2;// index of median of medians

select(a, numMedians, MOMIdx);

intnewMOMIdx = partition(a, size, MOMIdx);

if (k != newMOMIdx)

{

 if (k <newMOMIdx)

{

 select(a, newMOMIdx+1, k);

}

else/* if (k >newMOMIdx) */

 {

select(a+newMOMIdx+1,size-newMOMIdx-1,k-newMOMIdx -1);

}

}

}

}

International Journal of Science and Engineering Investigations, Volume 5, Issue 56, September 2016 31

www.IJSEI.com Paper ID: 55616-05 ISSN: 2251-8843

Figure 8. Fast Median-of-5 Function

The function in Fig. 8 locates the median of 5 values. The
function loads the five array values into five register variables.
This function is called several times. Ideally, if this function is
written in assembly language the constant factors can be further
improved.

The partition algorithm in Fig. 9 works by positioning two
pointers at the beginning of the array, the load pointer and the
store pointer. The load pointer advances through the array,
finding all values less than the pivot value and swapping them
into the initial segment of the array.

Figure 9.

The proposed algorithm uses the proposed Median of
Median algorithm (PMOM) in Fig. 6[2] to find a good pivot in
Quicksort. Hence, when the Quicksort as in Chapter 7[2] uses
PMOM to find pivot for very large array sizes is able to
guarantee a worst case running time of O(n log n).

IV. OBSERVATIONS

X= (x | x < m and x ϵ S}
Pivot =

m, m ϵ S
Y= (y | y > m and x ϵ S}

S

Figure 10.

Even when any other element from S is chosen as the
pivot, the algorithm works correctly, but looking at it closely,
it can be found that the worst-case running time depends on
|X|: the size of the set X and |Y| : the size of the set Y. Let
T(|S|) denote the worst-case running time of the algorithm on
the list S, then

T(|S|) = T(|S|/5) + O(|S|) + max {T(|X|), T(|Y|)} (2)

As discussed in the section above, (refer Equation 1) that if
m the pivot is the “median of medians”, both |X| and |Y| are at
most 3|S|/4.

T(n)=T(n/5) + O(n) + T(3n/4) (3)

From (1)

T(n) = O(n) + T(n/5) +T(7n/10)

Solving the above using substitution, Guess T(n) < C*n

=> T (n)= p*n + T (n/5) + T (7n/10)

=> C*n >= T(n/5) +T(7n/10) + p*n

=> C>= C*n/5+ C*7*n/10 + p*n

=> C>= 9*C/10 +p

=> C/10 >= p

=> C>= 10*p

int median5(T* a)

{

// Load array values for 5 elements in CPU registers

 registerint a0 = a[0];

registerint a1 = a[1];

registerint a2 = a[2];

registerint a3 = a[3];

registerint a4 = a[4];

/*Perform insertion sort on the five registers, Gives median

value in a2 */

if (a1 < a0)

swap(a0, a1);

if (a2 < a0)

swap(a0, a2);

if (a3 < a0)

swap(a0, a3);

if (a4 < a0)

swap(a0, a4);

if (a2 < a1)

swap(a1, a2);

if (a3 < a1)

swap(a1, a3);

if (a4 < a1)

swap(a1, a4);

if (a3 < a2)

swap(a2, a3);

if (a4 < a2)

swap(a2, a4);

/* Find and return index of median of the 5 elements */

if (a2 == a[0])

return 0;

if (a2 == a[1])

return 1;

if (a2 == a[2])

return 2;

if (a2 == a[3])

return 3;

if (a2 == a[4])

return 4;}

int partition(T a[], int size, int pivot)

 {

intpivotValue = a[pivot];

swap(a[pivot], a[size-1]);

intstorePos = 0;

for(intloadPos=0; loadPos< size-1; loadPos++)

{

if (a[loadPos] <pivotValue)

{

swap(a[loadPos], a[storePos]);

storePos++;

}

}

swap(a[storePos], a[size-1]);

returnstorePos; }

International Journal of Science and Engineering Investigations, Volume 5, Issue 56, September 2016 32

www.IJSEI.com Paper ID: 55616-05 ISSN: 2251-8843

Since it is possible to find such a constant p it implies

T(n) = O(n)

Using a similar logic it can be proved that T(n)=O(n) for
(3).

The experiment was done using three types of lists say L1,
L2, L3 where a list of type L1 has all elements arranged in
descending order, list of type L2 has all elements arranged in
ascending order and list of type L3 has elements in random
order.

Three sets of lists of type L1, L2, L3 were used as input for
the proposed experiment. Exactly the same sets of lists of type
L1, L2, L3 were given as input to

(i) Quicksort algorithm using Hoare’s partition [2] to find
pivot and sort the list. Hoare’s partition uses the first element
of the list as the pivot

(ii) Quicksort algorithm using PMOM to find the pivot for
partition and sort the lists.

The time taken by the two variants for Quicksort discussed
above was measured by the system clock in terms difference
between the start time and finish time for the program while no
other programs were running on the system. Let the difference
between the two time values be x, then it is termed as x ticks.

Readings of execution time were recorded for the two
variants of Quicksort for lists of type L1, L2 and L3 and graphs
were plotted to study the variation in execution time.

Case 1: List of type L1: Elements of set S are arranged in
descending order. The data table for the readings for Case 1 is
depicted in Fig. 11. The results for Quicksort using Hoare’s
partition are plotted as a red line and the results of Quicksort
using PMOM to find the pivot for partition are plotted as a blue
line graph in Fig. 12. The blue line graph shows an O(n log n)
curve. The red line graph shows an O(n^2) curve which is the
worst case for Quick sort.

Number of Elements PMOM Hoare

500 0 1

1000 1 2

2000 2 16

3000 4 32

4000 6 48

5000 8 63

10000 18 190

20000 37 703

25000 45 1121

30000 51 1551

40000 68 2749

45000 73 3472

47000 75 3809

Figure 11.

Figure 12.

Case 2: List of type L2: Elements of set S are arranged in
ascending order. The data table for the readings for Case 2 is
depicted in Fig. 13. The blue line in Fig. 14 shows results of
Quicksort using PMOM while the red line graph shows
Quicksort using Hoare’s partition. The blue line graph shows
an O(n log n) curve. The red line graph shows an O(n^2) curve
which is the worst case for Quicksort.

Number of Elements PMOM Hoare

1000 1 4

2000 2 13

3000 3 31

4000 4 43

5000 8 47

10000 16 153

20000 31 677

25000 39 968

30000 43 1433

40000 58 2637

45000 61 3334

47000 63 3380

Figure 13.

Figure 14.

0

500

1000

1500

2000

2500

3000

3500

4000

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

500 5500 10500 15500 20500 25500 30500 35500 40500 45500

Ti
m

e
 in

 T
ic

ks

Ti
m

e
 in

 T
ic

ks

Number of Elements

Elements arranged in Descending order

PMOM Hoare

0

500

1000

1500

2000

2500

3000

3500

4000

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

500 5500 10500 15500 20500 25500 30500 35500 40500 45500

Ti
m

e
 in

 T
ic

ks

Ti
m

e
 in

 T
ic

ks

Number of Elements

Elements arranged in Ascending order

PMOM Hoare

International Journal of Science and Engineering Investigations, Volume 5, Issue 56, September 2016 33

www.IJSEI.com Paper ID: 55616-05 ISSN: 2251-8843

Case 3: List of type L3: Elements of set S are in random
order. The data table for the readings for Case 3 is depicted in
Fig. 15 and the blue line in Fig. 16 shows results of Quicksort
using PMOM while the red line graph shows Quicksort using
Hoare’s partition. Both the red and the blue line graph shows
an O(n log n) curves.

Number of Elements PMOM Hoare

500 0 0

1000 0 1

2000 2 3

3000 3 4

4000 3 5

5000 8 8

10000 16 19

20000 30 43

25000 38 46

30000 42 55

40000 57 62

45000 62 65

47000 63 71

50000 77 76

100000 122 123

Figure 15.

Figure 16.

IV. CONCLUSION

The results of the experiment done in this paper prove when
the PMOM algorithm is used to find the pivot; that is, when the

“median of medians” is chosen as the pivotal element by the
partition in quick sort it helps to limit the worst-case of the
problem. It is evident from the graphs in the previous sections
that, Quicksort using PMOM gives a time complexity of O(n
log n) even in the worst case where as Quicksort using Hoare’s
partition runs in O(n^2) time in for the worst-case inputs.
When the elements are in random order the Quicksort using
Hoare’s partition and Quicksort using PMOM both show a
similar behavior giving a time complexity of O(n log n).

REFERENCES

[1] Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and
Robert E. Tarjan. Time bounds for selection. Journal of Computer and
System Sciences, 7:448{461, 1973.

[2] Introduction to Algorithms, Second Edition, Thomas H. Cormen,
Charles
E. Leiserson, Ronald L. Rivest, Clifford Stein, The MIT Press, ISBN 0-
07-013151-1 (McGraw-Hill)

[3] http://web.stanford.edu/class/archive/cs/cs161/cs161.1138
/lectures/08/Small08.pdf

[4] A. Schnhage, M. Paterson, and N. Pippenger, Finding the
median, Journal of Computer and System Sciences,
13:184{199, 1976.

[5] DoritDor and Uri Zwick, Selecting the median, In
Proceedings of 6th SODA, pages 88{97, 1995.Journal
version in SIAM Journal on Computing, 28:1722{1758,
1999.

[6] Hoare, C.A.R. (1961), ”Algorithm 65:Find” Comm ACM,
4(7):321-322

[7] Musser, David R. (1997).Introspective Sorting and
 Selection Algorithms, Software: Practice and
Experience, Wiley. 27 (8): 983–993.

[8] Chazelle, B. 2000,The soft heap: an approximate priority
queue with optimal error rate, J. ACM 47, 6 (Nov. 2000),
1012-1027.

Aviral Khattar was born in 1992 in Delhi, India. He has done

B.Tech. in Computer Science and Engineering from NIIT University,

Neemrana, Rajasthan, India from 2010-2014.

His internships include designing and developing a Flexible

Database Management System which can be hosted in Cloud at

Sasken Communication Technologies, IIT Madras Research Park for

which he was awarded Certificate of Appreciation for outstanding

R&D Work. He successfully completed Summer Internship Program

(SIP) at Computer Science & Automation Department (CSA) at IISc,

Bangalore under the guidance of Prof. N. Viswanadham.

Currently he is working at HCL Technologies as a Senior

Software Developer for testing tools (Functional Testing and Web

GUI testing) – Rational Functional Tester (RFT) and Rational Test

Workbench WebUI (RTWW).

0

20

40

60

80

100

120

140

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

500 7500 14500 21500 28500 35500 42500 49500 56500 63500 70500 77500

Ti
m

e
 in

 T
ic

ks

Ti
m

e
 in

 T
ic

ks

Number of Elements

Elements arranged in Random order

PMOM Hoare

