

47

International Journal of

Science and Engineering Investigations vol. 6, issue 63, April 2017

ISSN: 2251-8843

Comparative Analysis of Real-Time Operating System

(RTOS) of Some Selected OS Using External Signal

Generator and Oscilloscope

A. Abdulganiyu
1
, I. Rabiu

2

1,2
Department of Mathematics/Computer Science, Faculty of Natural Sciences, Ibrahim Badamasi Babangida University, Lapai

(abdulg2009@yahoo.com)

Abstract- This study presents a quantitative and qualitative
comparative analysis of Real Time Operating systems (RTOS)
of some selected operating systems in order to determine their
performance in executing a task(s) over real time. In so doing,
the studied systems which include Windows XP, Window 8,
Window 7 professional and window 10 which are largely used
in industrial and academic environments were selected and
analysed using a function generator and Oscilloscope
connected to the analysed system as a reference for
conventional non-real-time operating system. The evaluations
from the setup include real run time, worst case response times
for latency, latency jitter and response time. Results from this
study will be used as a generalization for the performance of
such operating system on real time and thus, a consideration
from this work will inform the choice of the most suitable
RTOS for mission critical or non-critical embedded tasks.

Keywords- Real Time Operating Systems, Window,

Oscilloscope, Function Generator

I. INTRODUCTION

Real time applications have become a very common
phenomenon in the past few years for both software developers
and the end users. Developers are given the enviable task of
making software with real time constraints. For end users, a
large number of real-time operating systems (RTOS) are
available in the market and one does get confused as to which
one to use such that it provides the best overall benefits in
terms of cost and operability. There are set of certain
benchmarks, which one could examine in a RTOS, such as
latency, susceptibility to different loads. Real Time Operating
Systems (RTOS) are specially designed to meet multitasking
and rigorous time constraints. In several situations RTOS are
present in embedded systems, and most of the time they are not
noticed by the users. Real time operating systems are the
multitasking operating systems, which not only depend upon
the logical correctness but also depend upon the application
delivery time. These valuable RTOS works on the philosophy
of the round robin algorithm and preemptive priority
scheduling method. The Idea behind the operating system is

not very new, it’s many years old. Evolution of operating
system causes significant changes in task solving methodology.
They stay’s responsible for the overall system requirement,
performance, and task solving methodology. A system which
works on the aspect of time determination is generally known
as the real time system. Advancement of embedded based real
time operating system guarantees the time constraint capability
and predictability of an application. Similarly, embedded
systems are becoming an integral part of commercial products
today. Mobile phones, watches, flight controllers etc. There is a
strong and compatible relationship between the system
hardware and the software, primarily the operating system to
ensure hard real time deadlines. The real time operating system
has to interface communicate well with the hardware below it
to prevent casualty.

On the other hand, various OS vendors now employed
various stringent standards that may not meet the needs
required for high level applications(EMF, 2015), Thus, the
question arises that, are this certified RTOS truly necessary for
the high level applications? If yes, than which one is the
suitable platform for a particular application? The objective of
this study is to enlighten both professional group and especially
non-technical group on best OS that may have the best RTOS
by providing a comparison chart among various popular
RTOS.

In this paper, the enhancement of operating system in real
time environment will be discussed based on the experimental
result analysis. It highlight the freely available, real-time
operating systems echo’s and analyse the real time attributes,
like timing latency, context switch latency and interrupt
latency, of these operating systems by means of simple
applications. The approach will attempt to introduce the
emerging trends in this field and provide a user friendly
classification, which can cover more than one professional
operating system. It will begin with the conceptual
enhancement of the current technology at fundamental level for
better technical understanding. The classification provides
choices to system designer, student and researchers. Hence,
this paper will present a brief comparison of several
commercial and free RTOS through a qualitative and
quantitative experimental analysis.

International Journal of Science and Engineering Investigations, Volume 6, Issue 63, April 2017 48

www.IJSEI.com Paper ID: 66317-07 ISSN: 2251-8843

II. METHODOLOGICAL APPROACH

The methodological approach of this study is based on the
evaluation approaches proposed in several publications by
different authors which include Franke (2007 professional),
Barabanov (1997 professional), Ganssle (2004), Koker (2007
professional), Barbalace et al. (2008) in this scheme, various
operating systems such as XP Windows (Window 7
professional , Window 8, Window 10 and Window 10) will be
tested for real time performance, thus, in doing so, the
experimental set will employ a PC parallel port to receive an
interrupt and generate a response to this interrupt, allowing
testing the system as a black box. Therefore, using an external
signal generator and an oscilloscope, the execution time for the
various windows tested will measured and compared for
analysis.

These tests is conducted such that the signal generator will
generate an external stimuli thus, analyzing the response for
these stimuli with an oscilloscope. To guarantee the results
reliability, all the experiments will be executed in the same
platform (a Pentium IV 400MHz PC with 256M Bytes of RAM
memory) subjected to several different load scenarios (normal
and overloaded use).

Figure 1. Schematic Model of the Experimental Setup for the proposed study

III. APPROACHES TO RTOS TEST

According to Taurion, comparing RTOS is not a trivial
task. Besides this, the specialists from Dedicated Systems, an
institution that has several projects and publications related to
RTOS comparison, states that it is not possible to measure
characteristics of a RTOS with reliability without using
external hardware [Beneden 2001].

The most important factors of real time systems are the
worst case response time of a task and worst case response
time of an interrupt [Sohal 2001]. However, it makes no sense
to analyze real time operating systems metrics such as interrupt
latencies and task switching time without considering different
CPU usage scenarios [Timmerman et al. 110108], as it is easier
for a system to be more predictable when it is not overloaded.

Labrosse in [Labrosse 2002] states that the most important
specification of a real time system is the amount of time that
interrupts are disabled, because interrupt latency is a
component of the system response time [Laplante 2004].
Additionally, response time measures of external interrupts
gives a good idea of the real time capabilities related to a
specific system or application [Franke2007 professional].

An evaluation approach proposed in several publications
[Franke2007 professional, Barabanov 1997 professional,
Ganssle2004, K¨oker2007 professional, and Barbalaceetal.
2008] consists in using the PC parallel port to receive an
interrupt and generate a response to this interrupt, allowing
testing the system as a black box. Using an external signal
generator and an oscilloscope, it is possible to obtain the
latency to handle interrupts and jitter (a random variation from
one latency measurement to another), as one of the most
accurate methods to measure execution time is through output
ports [Stewart2001]. Proctor also claims that latency tests only
can be conducted by external means [Proctor 2001]. Taurion
[2005], also states that the most common operating systems
metrics to measure quality is the task switching time between
two processes and the latency until the start of an interrupt
handler routine.

Keeping these facts in mind, it was decided to make the
comparisons taking each tested system as a black box. The
tests were conducted generating external stimuli with a signal
generator, and analyzing the response for these stimuli with an
oscilloscope. To guarantee the results reliability, all the
experiments were executed in the same platform (a Pentium II
400MHz PC with 256M bytes of RAM memory) submitted to
several different Load scenarios (normal and overloaded use).

IV. MATERIALS USED

In carrying out the experiment the following instrument and
systems were used, this enables the execution of Real-time
with different versions of Operating Systems.

V. MICROSOFT WINDOWS XP, 7 PROFESSIONAL, 8 AND 10

In subjecting the objectives of this study to text, various
operating systems were used this include Window XP, 7
professional, 8, and 10. Although Windows XP is not a RTOS,
it is common to find several situations where this system is
used to control critical applications [Stiennon 2008]. For this
reason, Windows XP was included in this study. As these
Window operating systems may be influenced by software and
different drivers, the caution of installing a new system was
taken before running the tests. Windows XP can be installed
only in x86 architecture computers (PC).The evaluated version
had Service Pack2.

VI. FUNCTION GENERATOR

A function generator is usually is piece of electronic test
equipment or software used to generate different types of
electrical waveforms over a wide range of frequencies. Some
of the most common waveforms produced by the function
generator are the sine, square, triangular and saw tooth shapes.
These waveforms can be either repetitive or single-shot (which
requires an internal or external trigger source). Integrated
circuits used to generate waveforms may also be described as
function generator ICs.

Although function generators cover both audio and RF
frequencies, they are usually not suitable for applications that

 System in

Test

Function

Generato
r

International Journal of Science and Engineering Investigations, Volume 6, Issue 63, April 2017 49

www.IJSEI.com Paper ID: 66317-07 ISSN: 2251-8843

need low distortion or stable frequency signals. When those
traits are required, other signal generators would be more
appropriate.

VII. OSCILLOSCOPE WITH CONNECTING CABLES

An oscilloscope, previously d informally known as a scope,
CRO (cathode-ray oscilloscope), or DSO (for the more modern
digital storage oscilloscope), is a type of electronic test
instrument that allows observation of constantly varying signal
voltages, usually a1so a two-dimensional plot of one or more
signals as a function of time. Other signals (such as sound or
vibration) can be converted to voltages and displayed.

Oscilloscope is used to observe the changes of an electrical
signal over time, such that voltage and time describe a shape
which is continuously graphed against a calibrated scale.

VIII. RESULTS AND ANALYSIS

As a result of the various selections and considerations of
the chosen parameters for the experiment presented in this
research, the selected quantitative parameters to be analyzed in
each system are:

1. Latency: Latency is analyzed externally taking the
RTOS under test in conjunction with the hardware as a black
box. The latency consists of the time difference between the
moment that an interrupt is generated and the moment that the
associated interrupt handler generates an external response.
The latency was measured in a scenario with low CPU use and
with the CPU overloaded. For each scenario60 independent
samples were taken

2. Jitter: Jitter is indirect information obtained from
several latency measures, consisting of a random variation
between each latency value. In a RTOS, the jitter impact could
be notorious, as it is analyzed by proctor when trying to control
step motors. For example, the pulses duration controls the
motor rotation, but the jitter induce the torque to vary, causing
step losses in the motor [Proctor and Shackle ford 2001]. To
compute jitter, the time difference between two consecutive
interrupt latency measures is calculated. Finally, the greatest
encountered difference is selected as the worst jitter of this
system.

3. Worst Case Response Time: Worst Case Response
Time is obtained using the method proposed by ISA that was
discussed above analyzing the maximum interrupts frequency
that is handled by the RTOS with reliability. The worst case
response time is the inverse of the maximum frequency
obtained. The test was made in a low CPU usage scenario and
in an overloaded CPU scenario. For each scenario, 60
independent samples were taken.

IX. ANALYZED SYSTEMS

A. Microsoft Windows XP

Although Windows XP is not a RTOS, it is common to find
several situations where this system is used to control critical

applications [Stiennon 2008]. For this reason, Windows XP
was included in this study. As Windows XP operating system
may be influenced by software and different drivers, the
caution of installing a new system was taken before running the
tests. Windows XP can be installed only in x86 architecture
computers (PC). The evaluated version had Service Pack2. Its
task manager allows users or programmers to determine the
priority of a running process. Between the options, there is one
with the title “Real Time”. It is important to consider that this
option does not offer real time capacity to a task. In fact, the
choice of this priority level only configures the task scheduler
to give the highest priority in the system to the task.

The system showed several instability situations when it
was overloaded with hundreds of running tasks, a ping flood1
against it and a high frequency of interrupts. This caused the
whole system to crash showing a blue screen with the message
“A problem has been detected, and Windows has been shut
down to prevent damage to your computer”. It is important to
mention that the blue screen occurrence was constant and the
procedure which causes this error is well known: generating
interrupts at 25 KHz (or more) in the parallel port interrupt pin
while a ping flood is executed against Windows XP.

In the experiments, Windows XP was stressed with ping
floods that indirectly generates thousands of interrupts per
second via network interface card joint with a fixed interrupt
frequency imposed through the parallel port. The system
showed stability and good real time response time up to a
certain limit. Configuring the task priority to the “real time”
option of the scheduler was also very efficient, because when a
real time task was consuming CPU time, all other tasks stopped
responding. Even the mouse and keyboard did not answer
movements or key hits, but the real time task performance did
not deteriorate.

The conclusion is that given its restrictions and
applications, Windows XP can be used with determinism and
reliability in a real time system. This is confirmed by Cinkelj,
who claims that it is possible to achieve data acquisition with
soft real time guarantees in Windows XP when the computer is
not overloaded [Cinkelj et al. 2005].

B. Window 7 professional .0 embedded

The studied version of Window7 professional .0 is the
embedded type. It supports ARM, MIPS, SH4 and x86
architectures. The tests were performed in the x86 architecture.
As in other operating systems, the clock interrupt is the
“heartbeat” of the system [Viswanathan 2006]. In most
systems, this is a constant rate interrupt generated by a
hardware clock to trigger system’s housekeeping routines;
however Windows introduces an interesting innovation in this
aspect: the variable clock tick, to reduce the overhead that the
clock tick could cause in the operating system. For example,
the variable clock tick system verifies that in a certain moment
it is not necessary to generate clock tick interrupt sat each 1ms,
but only at each 100ms, changing the clock tick interrupt
frequency. This allows the system to adjust the tick rate
according to each situation [Viswanathan 2006].

This also implies in energy saving and more computing
power. One interesting Windows 7 professional characteristic

International Journal of Science and Engineering Investigations, Volume 6, Issue 63, April 2017 50

www.IJSEI.com Paper ID: 66317-07 ISSN: 2251-8843

is that Microsoft has made its source code available, giving
developers more control and flexibility to the developed
system. Another positive is that Microsoft has made available
the complete development platform for this system without
costs during four months from the moment the developer
installs it, so that programmers can explore and test the system
before really buying it. Windows 7 professional .0
development platform also has several practical and powerful
tools to verify if the system is meeting real time requirement
and better debug the system.

Among them, Kernel Tracker, IL Timing and OS Bench are
really useful. The RTOS showed good stability in the
frequencies measurement, even for the worst conditions. In
addition, the input frequency was slowly improved until the
maximum output value of the external generator (1MHz) was
obtained, without causing any damage or problem in the
running system. Meanwhile, the maximum input frequency that
the system measured correctly was50KHz. From this value, it
is possible to compute the worst case response time of
Windows which is 200µs (1/50 KHz).

C. Window 8.0

The real time kernel of this window offers a reentrancy
control mechanism and the priority inheritance protocol to
avoid priority inversion, a common problem in real time
kernels. The tests showed that the window has a good task
scheduler, as the test to measure the external input frequency
showed great results when the task had the greatest priority in
the system, while its results became bad when the task was
configured with the lowest priority available in the system).
Even though, it was possible to measure input frequencies up
to 520 KHz, while the CPU load was near 1010%. Higher
frequencies did crash the system, requiring the computer to be
restarted. This could be related to some interrupt counter over
flow, or memory corruption, because the tested window 8.0
kernel does not use the Memory Management Unit (MMU) to
protect the tasks memory access from each other. A solution to
this problem could be simply accomplished by using the new
Micrium Real Time kernel released in 2012, which uses the
MMU to protect the tasks among each other. The system
exhibited little change in the measures when comparing
overload scenarios to normal ones, with very low times.

D. Window 10.0

The Window 10.0 used in this research has is system
memory re-configure in such that it becomes a free operating
system, with a modular monolithic kernel where all the
important parts of the operating systems are in kernel space,

such as memory management, task scheduler, file system and
device drivers. It is possible to dynamically add or remove
parts and functions of the kernel using Kernel Modules (KMs).
Kernel implements memory protection with the MMU aid the
evaluated kernel was 2.6.18.

Regarding real time systems, window 10.0 is not a real time
operating system, although, there is a low latency kernel patch
called low-pre-empt patch that can be applied to the main
stream to add soft real time capacity to the system. However,
adding more rigorous real time constraints is not an easy task.
Including hard real time guarantees in a kernel with millions of
lines of code is very complex and could lead to errors. As the
low-pre-empt patch is not fully adequate to transform window
10.0 in a full real time kernel, better approaches can be used to
solve this problem. Additionally, Ambike measured the clock
resolution of popular systems such as Windows 2000 and Red
Hat Linux 7 professional .3, and obtained conclusive
information to state that these systems are not good options for
real time applications [Ambike et al. 2005].

Despite the fact that window 10.0 is not a RTOS, it showed
good temporal behavior, but when high frequencies were
applied to the interrupt input pin joint with ping flood, the
system became unstable and crashed. The jitter was also
relatively high, and could cause unexpected variations in real
time systems that need precision.

X. EXPERIMENTAL RESULTS

Table 4.1 shows the experimental results for each system
considering the worst measured value for each of them with the
system overloaded during the measurements. Line 1 consists of
worst response time (maximum frequency of stable operation),
line 2 of interrupt latency and line 3 consists of the latency
jitter. One thing that was notable is the low response time of
Window 10.0. It should be noted that the tested version of the
system did not use the system’s Memory Management Unit
(MMU). This improves the system performance; nevertheless
there is no protection between the memory areas of the tasks,
improving the possibility of a task to corrupt others, or even the
whole system.

The values showed in the table can be compared with a
criteria that defines a hard real time system according to
OMAC (Open Modular Architecture for Control) user group
that considers a system ”hard real time” the one that has a jitter
no higher than100µs in tasks that has cycles of up to 10ms.

TABLE I. SUMMARY OF TIME MEASURED FROM THE EXPERIMENT

S/No.
Tested Windows/Operating Systems

Win Xp Win 7 professional .0 Win 8.0 Win 10.0

1 200 27 professional 3.56 110.88

2 7 professional 100 110 6.7 professional μs 107 professional

3 650 108.5 2.45 810.110

International Journal of Science and Engineering Investigations, Volume 6, Issue 63, April 2017 51

www.IJSEI.com Paper ID: 66317-07 ISSN: 2251-8843

Where
1: Response Time (maximum sustained frequency),
2: Latency,
3: Latency Jitter

XI. NUMERICAL INTERPRETATION

The following charts are the numerical interpretation of the
results obtained for each window

Figure 2. Response time for all the measured systems showing variations of

worst case response time in Terms of task execution

Figure 3. Latency for all the measured systems showing variations of time

in Terms of task execution and over load

Figure 4. Latency Jitter for all the measured systems showing variations of

time in terms of task execution and over load

XII. WINDOW VALUES OF RESPONSE TIME, LATENCY AND

LATENCY JITTER

The following figures shows the tested window values for
response time, latency and latency jitter, thus the performance
of each window were measured under different load conditions
and under different tasks.

Figure 5. Latency, Latency Jitter and response time for window XP under
different load conditions measured with time

Figure 6. Latency, Latency Jitter and response time for window 7

professional .0 under different load conditions measured with time

Figure 7. Latency, Latency Jitter and response time for window 8.0 under

different load conditions measured with time

International Journal of Science and Engineering Investigations, Volume 6, Issue 63, April 2017 52

www.IJSEI.com Paper ID: 66317-07 ISSN: 2251-8843

Figure 8. Latency, Latency Jitter and response time for window 10 under

different load conditions measured with time

XIII. DISCUSSION OF FINDINGS

The test on Windows XP operating system used in this
study was influenced by software and different drivers. During
this test the system showed several instability situations when
it was overloaded with hundreds of running tasks and a high
frequency of interrupts. This caused the whole system to crash
showing a blue screen message. It is important to mention that
the blue screen occurrence was constant and the procedure
which causes this error is well known thus, the interrupts in the
parallel port is executed against Windows XP.

Therefore, when a fixed interrupt frequency is imposed
through the parallel port, the system showed stability and good
real time response time up to a certain limit of 200 , Latency
of 7 professional 100 and latency jitter of 650 . In
conclusion, it can be stated that given any restrictions and
applications, Windows XP can be used with determinism and
reliability in a real time system.

Similarly, the Window7 professional .0 embedded tests
were performed in the same way with other operating systems,
the clock interrupt was used as the “heartbeat” of the system.
This allows the system to adjust the tick rate according to each
situation. During the test for this system is was discovered that
the system stopped answering requests for some seconds, but
right after it went back to normal operation (worst overload
scenario). The scenario gave rise to a response time of 27
professional , latency of 110 and latency jitter of
108.50 . Therefore, in conclusion is that Windows 7
professional, 0 embedded is a very robust and reliable
operating System to execute real time tasks, with the advantage
of offering several powerful development tools.

Also, window 8.0 operating system exhibited little change
in the measures when comparing overload scenarios to normal
ones, with very low times. The response stood at3.56 ,
latency at and latency jitter at 2.45

Finally, the test on Window 10.0 used in this research has is
system memory re-configure in such that it becomes a free
operating system, Despite the fact that the window 10.0 is not a
RTOS, it showed good temporal behavior , but when high

frequencies were applied to the interrupt input, the system
became unstable and crashed showing blue screen. The jitter
was also relatively high, and could cause unexpected variations
in real time systems that need precision. The latency stood at
107 professional , latency jitter at 810.110 and response
time at 110.88 .

XIV. CONCLUSION

In this study a performance comparison had been made on
four selected systems with different operating system (Window
7 professional, Window 8, and Window 10) by comparing their
RTOS. In so doing, a function generator and an oscilloscope
were used to measure the response time, latency as well as
latency jitters of each operating system. The experimental
results for each system were recorded by considering the worst
measured value for each of them with the system overloaded
during the measurements. The values obtained were tabulated
and analyzed. The results from the various computation shows
that even with same system specification the RTOS will varies
with accordance to the type of operation system also the
technical aspects were taken into account, but it is well known
that subjective aspects also plays an important role in the
choice of a RTOS. Similarly, the values showed in the table
can be compared with a criteria that defines a hard real time
system according to OMAC (Open Modular Architecture for
Control) user group that considers a system ”hard real time”
the one that has a jitter no higher than100µs in tasks that has
cycles of up to 10ms [Hatch 2006].

In this work, real time operating systems were compared
through several parameters, and it was noticed that with the
exception of Windows XP, which is not a RTOS, all the
studied systems have met the temporal requirements in a
satisfactory way. The well consolidated systems window 7
professional .0, window 8.0, window 10.0 did really show
determinism and reliability, although at the beginning the
windows shows instability but at the end they all showed
promising characteristics.

Windows 7 professional Embedded was tested for critical
applications, and during the tests it behaved as a robust,
powerful and flexible system. In the free open source domain,
RTAI of this wind could offers the opportunity of
implementing reliable real time systems with software, having
all the advantages of the Linux community and already
available software that could be used together. A final
consideration of this work is that there is a very rich field
involving the choice of the most suitable RTOS for mission
critical or noncritical embedded tasks. In this work, just some
technical aspects were taken into account, but it is well known
that a subjective aspect also plays an important role in the
choice of a RTOS.

Conclusively, the following recommendations are proffered
both at professional or technical levels:

1. Response is one integral part of any effective system
particularly those uses for high level programming, therefore,
latency and latency jitters should always be tested as this

International Journal of Science and Engineering Investigations, Volume 6, Issue 63, April 2017 53

www.IJSEI.com Paper ID: 66317-07 ISSN: 2251-8843

allows a quick response time to a maximum frequency of
stable operation.

2. One thing that was notable is the low response time of
µC/OS for window 8. It should be noted that the tested version
of the system did not use the system’s Memory Management
Unit (MMU). This improves the system performance;
nevertheless there is no protection between the memory areas
of the tasks, improving the possibility of a task to corrupt
others, or even the whole system.

3. System performance under different load conditions
should be considered before judging which RTOS better than
the other RTOS. This will enhance and inform choice of users.

4. Since RTOS require different time to execute there
should be different open room to think of different ways of
optimizing a Kernel for Real time applications by taking the
best features of each.

5. Since RTOS are evaluated for performance, them it
should have some support for multitasking (threads) and it
should be pre-emptive priority driven system.

RTOS should support thread synchronization using
semaphores or mutexes. RTOS must have sufficient number of
priority levels as such RTOS must avoid priority inversion.

REFERENCES

[1] Edwards. S (2001).Languages for Digital Embedded systems

[2] Franke, M. (2007): “A quantitative comparison of real-time Linux
solutions”. Technical report, Chemnitz University of Technology.

[3] Keeling N.J. (1998). How Priority Inversion messes up real-time
performance and how the Priority Ceiling Protocol puts it right. Real-
time Magazine 1010(4): 46-50.

[4] K”oker, K.(2007). “Autonomous Robots and Agents, chapter Embedded
RTOS: Performance Analysis with High precision counters, pages 171-
179, Springer Berlin /Heidelberg.

[5] Labrose, J. (2002). MicroC/OS-II-The Real Time Kernel, CMP Books, 2
edition.

[6] Laplante, P.A. (2004). Real- Time System Design and Analysis, John
Wiley & Sons.

[7] NIST (2002). Introduction to Linux for real- time control, Technical
report, National Institude of standards and Technology (NIST).

[8] Liu C. and Layland J. (2002) Scheduling algorithm for
multiprogramming in a hard real-time Environment, Journal of the
Association for Computing Machinery, 20(1): 46-61

[9] Stewart D. (2001) Measuring Execution Time and Real-Time
Performance, In Embedded Systems conference, San Francisco, April
2001.

[10] Sohal, V. (2001), How to really measure real-time. In Embedded System
Conference.

[11] Obenland K. (2001) Real-Time Performance of Standards based
Commercial Operating Systems. In Embedded Systems conference, San
Francisco, April 2001.

[12] ManasSaksens (2001), Linux as Real-Time Operating System. In
Embedded Systems conference, San Francisco, April 2001.

[13] Martin Timmerman (1998). RTOS Evaluations Kick Off. Real-Time
Magazine 108(3): 6-10. March 1998.

[14] Taurion, C. (2005). Software Embarcado-A nova onda da informac, ao,
Brasporat.

[15] Timmerman, M. (2000a). “RTOS market overview – a follow up”,
Dedicated Systems Magazine.

[16] Timmerman, M. (2000b), “RTOS market survey – preliminary results”,
Dedicated systems Magazine.

[17] Timmerman M. (2001), What makes a good RTOS. Technical report,
Dedicated Systems.

	I. Introduction
	II. Methodological Approach
	III. Approaches to RTOS TEST
	IV. Materials used
	V. Microsoft Windows XP, 7 professional, 8 and 10
	VI. Function Generator
	VII. Oscilloscope with connecting cables
	VIII. Results and Analysis
	IX. Analyzed Systems
	A. Microsoft Windows XP
	B. Window 7 professional .0 embedded
	C. Window 8.0
	D. Window 10.0

	X. Experimental Results
	XI. Numerical Interpretation
	XII. Window values of Response time, Latency and Latency Jitter
	XIII. Discussion of Findings
	XIV. Conclusion
	REFERENCES

