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Abstract- The North – West Corner Method (NWCM), the 
South – East Corner Method (SECM), the North – East Corner 
Method (NECM) and the South – East Corner Method 
(SECM), are adopted to compute the Initial Basic Feasible 
Solution (IBFS) of the transportation problem. In this paper, 
after giving the procedure of the SECM, we show that the 
NWCM and the SECM lead to the same solution, as well as the 
NECM and the SWCM. 
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I. INTRODUCTION 

The linear program to minimize the transportation costs 
from different origins to the different destinations in respecting 
the constraints of availability and demand, is called the 
transportation problem. In this problem, the availability can be 
equal to the demand (balanced problem), the availability may 
be superior to the demand and the availability may be less than 
the demand. One of the first and important applications of the 
linear programming techniques, was the formulation and the 
solution of the transportation problem. The basic transportation 
problem was originally stated by Hitchcock [1] and later 
discussed in detail by Koopman [2]. An earlier approch was 
provided by Kantorovich [3]. The linear programming 
formulation and the associated systematic method for solution 
were first given in Dantzig [4]. The recent approaches were 
respectively given by Polaniyappa and Venoba [5], Lakshmi & 
Anantha [6] and Anantha & Lakshmi [7]. The general 
transportation problem can be represented in a table form [8, 9] 
with mn cells: 

 

TABLE I.  TABLE OF THE GENERAL TRANSPORTATION PROBLEM  

             Destinations 

Origins 
      …    …    Supply :    

           …     …        

                        

                

           …     …        

                

           …     …        

Demand :          …    …    ∑       
 
     ∑   

 
    

Where    is the quantity of commodities available at the 
origin i,    is the quantity of commodities requested at the 

destination j and     is the transportation cost from the origin i 

to the destination j. A set of non negative values, i = 1, et j = 1; 
that satisfies the constraints is called a feasible solution to the 
transportation problem [8, 10, 11]. 

A feasible solution is said to be optimal if it minimizes the 
total transportation cost. A non-degenerate basic feasible 
solution is a basic feasible solution to a (m×n) transportation 
problem that contains exactly m+n-1 allocations in independent 
positions. 

 

II. METHODOLOGY 

Followings steps are involved in the SECM: 

Step 1: Draw the general transportation problem table and 
verify that the problem is balanced. 

Step 2: For the south-east corner, take    = min (   ,   ). 

Step 3: If     =     , then the row m is deleted. Replace    by 
  -    . 

If     =     , the column n is deleted. Replace     by   -   . 

Step 4: If    =    , then     =         : the row m and the 

column n are deleted. We have a degenerate basic feasible 
solution. 

Step 5: A new matrix of order (m-1)  n, or m        or 
(m-1)         These are reduced matrices.  

Repeat steps 1-3 till all quantities are exhausted. 

For the NWCM, the NECM and the SWCM we begin 
respectively with the north-west cell [6, 8], the north-east cell 
[10] and the the south-west cell [7]. For those NWCM, NECM, 
SWCM and SECM, the costs       are not necessary to find an 

IBFS.     

 

III. ILLUSTRATION, RESULTS AND DISCUSSIONS 

Find the IBFS to the following transportation problem by 
the SECM : 
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TABLE II.  DATA OF THE TRANSPORTATION PROBLEM FOR THE SECM 

              

      
               

       6 

       8 

       10 

   4 6 8 6 ∑       
 
     ∑     

   24 

 

It is a balanced transportation problem as: 

 ∑       
 
     ∑   

 
        

At the beginning, we have a matrix of order 3     

     = min (    ,      ) = min (10, 6) = 6 ; 

     = 6 - 6 = 0 and we replace        by      -       = 10 - 6= 4.  

The column 4 is deleted and a new matrix of order 3    
will appear.     = min (     ,      ) = min (4, 8) = 4 ; 

     = 4 - 4 = 0. We replace        by      -       = 8 – 4 = 4.  

The row 3 is deleted and a new matrix of order 2    will 
appear. 

    = min (    ,      ) = min (8, 4) = 4 ; 

     = 4 - 4 = 0. We replace       by      -       = 8 – 4 = 4.  

The column 3 is deleted and a new matrix of order 2    
will appear. 

If we follow this logic, we find     = 4,     = 2 and     = 
4. 

In short, for the SECM, we have the following table: 

 

TABLE III.  TRANSPORTATION PROBLEM FOR THE SECM  

          

      
               

       = 4     = 2   6 

        = 4     = 4  8 

         = 4 
At first 

    = 6 
10 

   4 6 8 6 
∑       

 
    

 ∑   
 
       

 

  We get a non-degenerate basic feasible solution. Using the 
NWCM [6, 8], we get the next table: 

 

 

 

 

 

 

TABLE IV.  TRANSPORTATION PROBLEM FOR THE NWCM  

          

      
               

   
At first 

    = 4 
    = 2   6 

        = 4     = 4  8 

         = 4     = 6 10 

   4 6 8 6 
∑       

 
    

 ∑   
 
       

 

This gives us a non-degenerate basic feasible solution. 

Therefore, the SECM and the NWCM yield the same 
result. 

With the NECM [10] we have the next table: 

 

TABLE V.  TRANSPORTATION PROBLEM FOR THE NECM  

           

   
               

   
 

   
At first 

    = 6 
6 

         = 8  8 

       = 4     = 6   10 

   4 6 8 6 
∑       

 
    

 ∑   
 
       

 

We get a degenerate basic feasible solution. Using the 
SWCM [7], we get the next table: 

 

TABLE VI.  TRANSPORTATION PROBLEM FOR THE SWCM 

      

   
               

          = 6 6 

         = 8  8 

   
At first 

    = 4 
    = 6   10 

   4 6 8 6 
∑       

 
    

 ∑   
 
       

 

This gives us a degenerate basic feasible solution. Thus, the 
NECM and the SWCM give the same result. 
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IV. CONCLUSION 

In this paper, we gave the SECM which is a new method 
used in solving transportation problem. For this SECM, we 
proved that the values of      move, on or around the diagonal 

from the cell     to the cell    . We also showed that, on the 
one hand the SECM and NWCM, and on the other hand the 
SECM and NECM, always have the same IBFS. 
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