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Abstract- In this paper, in the case of the Unrevised Simplex 
Method (USM), we show that the TORA software is applicable 
only in solving Linear Programming Problem (LPP) when the 
matrix associated to the initial basis is an identity matrix. We 
show that if the matrix associated to the initial base is any, we 
obtain the same result as that obtained using the TORA  
software. 
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I. INTRODUCTION 

Operations Research (OR) is a statistical tool [1, 2] which 
was developed during the Second World War. Programming 
which started in the United Kingdom as a part of OR soon 
spread to the United States of America [3, 4, 5]. The USM is 
among the popular methods to solve the general LPP. George 
B.  Dantzig [3] in the year 1947 formulated the general LPP 
and devised the USM for solving these LPP. The USM came to 
solve optimization problems of objective functions, moving to 
sides of a polygon constraint or on the edges of the polyhedron 
constraints [6, 7, 8]. Here we try to contrast the LLP solving 
using the USM and the TORA software, one of the reference 
softwares in LPP [9, 10]. 

 

II. MATHEMATICAL FORMULATION AND METHODOLOGY 

A. Mathematical Formulation 

Let:  

{

        
           
        
          

                                                                       (1) 

be a linear program written in the standard form. 

A is an m×n  matrix of rank m. 

Let J be any basis of A, i.e. the corresponding matrix is 
identity or not. 

A = [      ̅]  

X =[
  
  ̅
], 

C =[      ̅], 

where    is the matrix relating to the basic variables,     ̅ is 
the matrix relating to the non- basic variables,    are the basic 

variables and   ̅  the non- basic variable,    the cost vector 

related to the base J and    ̅ the cost vector not related to the 
base J. 

In [7, 9] we set Π =  (  )  . The linear program (“Eq. 

1”) becomes : 

{
 

 
            ̂ 

          

  ̂   ̂
    

 

where  ̂  =       is the reduced cost vector ; C the cost 
vector ; 

  ̂=[    ( 
 )     ̅]; 

 ̂ = (  )   ; 

   is an identity matrix of order m ; 

     (  )    is the multiplicative vector relating to the base 
J or price vector. 

Thereby, the linear program is written in canonical form 
with respect to the basis J. The J basis associated solution is: 

{
  ̅   

      ( 
 )    

 

If  ̂    then J is an optimal basis and Max Z=      

In the case of the linear program: 

{

        
          
    
    

 

if  ̂     then J is an optimal basis and Min Z =      
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B. Methodology 

In the case of maximization [7], if the reduced costs are 

negative or zero, then     is optimal and the USM is finished. 

Otherwise, the method continues.  

In the case of minimisation if the reduced costs are positive 
or zero, then     is optimal and the USM is finished. Otherwise, 

the method continues. For both cases (maximisation and 
minimisation), if     is not optimal, we choose an index h 

corresponding to a non-basis variable (    ) for which the 

reduced cost is the most positive (maximisation case) or the 
most negative (minimisation case). If there is ex aequo, an 
arbitrary choice is made. Thus, for both cases, h will be the 
index of the new variable. In [7], the value of     is 

min {
  

   
       } =  

  

   
, 

where: 

     ( 
 )      

i takes the values of the basis J,    is the     column of matrix 
A and the  variable     is  removed from the basis. 

C. TORA Software and the USM for LPP 

Following TORA Software conception, to solve the LPP 
using the USM for the next two linear programs: 

{

        
           
        
          

 

and 

{

        
          
    
    

 

the basis J is not any but has to be related to the identity matrix, 
obtained after adding the slack variables. 

  

III. RESULTS 

A. Illustration Using TORA Software 

Let  

{
 
 

 
 
                     

           
                   
               
                 

                                            (2) 

be a linear program.  

With TORA software [9], the solution is obtained after the 
iteration 3: 

 

Figure 1.  Input grid Linear Programming 

 

 

Figure 2.  Iteration 1 & 2 

 

 

Figure 3.  Iteration3 

 

Thus, the solution is: 

Max Z = 96 

               = 4. 

B. Illustration with the USM Without Table 

The LPP (“Eq. 2”) under his standard form is: 

{
 
 

 
 
                     

           
                       
                   
                       

                (3) 

From the LPP (“Eq. 3”), 

A= (
                 
                 

), C = (2,  2,  6,  0,  0), b= (
  
  
)    

Taking for example, J = {2, 3}, the corresponding matrix 
is: 

   = (
  
  

), (  )   =  (
       

 
 

 
         

 

 

), 

      ( 
 )    = (

  
 
) = (

  
  
). 

The associated basic solution is: 
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X= 

(

 
 

 
  
 
 
 )

 
 

.     Π = (2, 6)  (
       

 
 

 
   

 

 

)  = (2, 0). 

 ̂= (2, 2, 6, 0, 0) - (2, 0) (                 
                 

) = (0, 0, 0, -2, 0). 

As  ̂    then J is an optimal basis and the solution is: 

Max Z=     = (2, 0) (
  
  
) = 96 

               = 4. 

 

IV. CONCLUSION AND FUTURE WORK 

In this paper we have showed that the TORA software 
which is one of the reference softwares in Linear 
Programming, is incomplete. We can’t use the TORA software 
in solving Linear Programming, Problem (LPP) when the 
matrix associated to the initial basis is not an identity matrix, 
even if we have the same results. 

In future we hope to get new TORA software in solving 
Linear Programming Problem (LPP) when the matrix 
associated to the initial basis is any. 
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