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Abstract- This paper presents the existence of Ši'lnikov 
homoclinic and heteroclinic orbits in the novel system by using 
the undetermined coefficient method. The Ši'lnikov criterion 
along with some technical conditions guarantees that the novel 
system has both Smale horseshoes and the horseshoe chaos. 
Moreover, it is shown that the heteroclinic and homoclinic 
orbits together determine the geometric structure of   attractors. 
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I. INTRODUCTION 

As one of the most fascinating nonlinear phenomena, chaos 
has been extensively studied in the field of mathematics, 
physics, astronomy, chemistry and engineering communities in 
the last four decades. An extremely remarkable finding is that 
chaos has great potential applications in many technological 
and engineering disciplines [1-14]. As a result, many efforts 
have been devoted to the generation of complex chaotic 
dynamics in the continuous-time systems [15-20].  

 Zhou and Chen [18] proposed a new analysis tool, i.e., 
undetermined coefficient method, which is a powerful tool to 
determine the existence of Ši'lnikov chaos, and has been 
successfully used in the literature [17, 18, 21–24] to construct 
the heteroclinic or homoclinic orbits of Ši'lnikov type. This 
work find heteroclinic and homoclinic orbits of Ši'lnikov type 
at the two equilibrium points of the novel system. 

This paper is organized as following: Section 2, some basic 
concepts and terminologies related to homoclinic and 
heteroclinic orbits are reviewed. In Section 3 the Ši'lnikov 
heteroclinic orbits of the novel system is studied in detail by 
using the undetermined coefficient method. In this section, the 
algebraic expression of the heteroclinic orbit will also be 
derived, and the uniform convergence of its series expansion is 
proved. Section 4 introduces the undetermined coefficient 
method, which will be used to find homoclinic orbits in the 
novel system.  Also in this section, the algebraic expression of 
homoclinic orbits will also be derived, and the uniform 
convergence of its series expansion is proved.  Finally, some 
concluding remarks will be provided in section 5. 

 

II. HOMOCLINIC AND HETEROCLINIC ORBIT 

Consider the third-order autonomous system 

3
( ),

dx
f x x R

dt
                  (1) 

where the vector field 
3 3

( ) :f x R R  belongs to class 

( 2)
r

C r  . 

 Let 
3

e
x R  be an equilibrium point of system (1). Then  

e
x  is called a hyperbolic saddle focus (or simply, saddle focus) 

if the eigenvalues of the Jacobian ,A Df  evaluated at 
e

x , 

are: 

, , 0, 0i                    (2) 

where ,   and   are real. 

 A homoclinic orbit ( )t  refers to a bounded trajectory of 

system (1) that is doubly asymptotic to an equilibrium point P  

of the system, i.e. lim ( ) lim ( )
t t

t t P 
 

  .  

A heteroclinic orbit ( )t , is similarly defined except that 

there are two distinct saddle-focus 
1

P  and 
2

P , being connected 

by the orbit, one corresponding to the forward asymptotic time, 
and the other, to the reverse asymptotic time limit, 

1
lim ( )

t

t P


  and 
2

lim ( )
t

t P


 . 

The heteroclinic or homoclinic Ši'lnikov method, namely, 
the Ši'lnikov criterion for the existence of chaos, is summarized 
in the following theorems [25-29]. 

A. Theorem 1[the heteroclinic Ši'lnikov theorem] 

Suppose that two distinct equilibrium points, denoted by 
1

e
  and 

2

e
 , respectively, of system (1) are saddle foci, whose 

characteristic values 
k

  and 
k k

i   (k =1,2)  satisfy the 

following Ši'lnikov inequalities: 

0, 1, 2 , 0
k k

k                      (2) 

Under constraint 
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1 2 1 2
0 0or                 (3) 

Suppose also that there exists a heteroclinic orbit joining 
1

e
  and

2

e
 , then: 

(i) The Ši'lnikov map, defined in a neighborhood of the 
heteroclinic orbit, has a countable number of Smale horseshoes 
in its discrete dynamics; 

(ii) For any sufficiently small 
1C -perturbation  g  of f , 

the perturbed system 

3
( ),

dx
g x x R

dt
               (4) 

has at least a finite number of Smale horseshoes in the discrete 
dynamics of the Ši'lnikov map defined near the heteroclinic 
orbit; 

(iii) Both the original system (1) and the perturbed system 
(4) have horseshoe type of chaos. 

B. Theorem 2 [the homoclinic Ši'lnikov theorem] 

Suppose that one equilibrium point of system (1), denoted 

by 
e

 ,is  saddle focus, whose eigenvalues   and i 

satisfy the following Ši'lnikov condition: 

0, 0, , 0                  (5) 

Suppose also that there exists a homoclinic orbit connecting 

e
  then: 

(i) The Ši'lnikov map, defined in a neighborhood of the 
homoclinic orbit of the system, possesses a countable number 
of Smale horseshoes in its discrete dynamics; 

(ii) For any sufficiently small 
1C -perturbation  g  of f , 

the perturbed system 

3( ),
dx

g x x R
dt

                                                         (6) 

has at least a finite number of Smale horseshoes in the discrete 
dynamics of the Ši'lnikov map defined near the homoclinic 
orbit; 

(iii) Both the original system (1) and the perturbed system 
(6) exhibit horseshoe type of chaos. 

For convenience, a homoclinic or heteroclinic orbit 
satisfying (2) or (3) and (5) is referred to as the Si’lnikov type. 
Thus, the homoclinic or heteroclinic Si’lnikov criterion implies 
that if system (1) has one homoclinic or heteroclinic orbit of 
the Si’lnikov type, which connects a saddle focus of the system 
to itself or two distinct saddle foci of the system, then it has 
Smale horseshoe chaos, which is rigorous in mathematical 
sense. 

 

III. THE HETEROCLINIC ORBITS OF THE NOVEL SYSTEM 

The novel system [30] can be described by the following 
differential equation: 

dx
y x

dt
   

.
dy

a y xz
dt

                 (7) 

dz
xy b

dt
   

where ,a b R  . The novel system (7) has chaotic 

attractors as shown in Fig.1 when 0.5, 0.5a b  . The 

system has two equilibrium points: 
1,2

( , , )E b b a    

 

Figure 1.  Phase portraits of the novel system in the three-dimensional 

 

Then, the characteristic equation of the system (7) at the 

points 1E  and 2E is:  

3 2
(1 ) 2 0a b b                    (8) 

If 1a   Due to Descartes' rule of signs [31, 32]. The 

characteristic equation (8) has no positive real root. Thus, it has 
at least one negative real root. 

 In equation (8) Let 
(1 )

3

a
 


  , then equation (10) 

becomes: 

3
0p q                  (9) 

where 
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2 3
(1 ) 2(1 ) (1 )

, 2
3 27 3

a a b a
p b q b

  
                    (10) 

and 

2 3

2 3

q p
  

   
   
   

 

By Cardan formula, the equation (9) has a unique negative real 

root,   , and a conjugate pair of complex roots, i  , 

where 

3 3 ,
2 2

q q
          

3 3
1

2 2 2

q q
         

 
 
 

 

3 3
3

2 2 2

q q
        

 
 
 

 

  When 0,  therefore, the algebraic equation (9) has the 

following three roots: 

1 2,3

(1 ) (1 )
,

3 3

a a
i    

 
                (11) 

Respectively, where 1 0  .To ensures that the real part of the 

complex conjugate roots is positive and it is further required 
that: 

3 3
2(1 )

0
2 2 3

q q a
                    (12) 

Then, when 0   and inequality (12), one can easily 

obtain that the two points 1E  and 2E  are of hyperbolic saddle 

foci type. 

A. The existence of heteroclinic orbits in the novel system 

In this part, we will investigate the undetermined 
coefficient method   to prove the existence of heteroclinic 
orbits of system (7).  

From (7), we find that: 

   
2

, ,

( )
,

y x x y x x y x x

ay y ay y x x ay y
z z

x x

     

   
 






 (13) 

Substituting (13) into the third equation of system (7) gives 

   3 2 4
1 ( (1 ) ) 0x x a x x x a x x bx x                (14) 

If ( )x t  is found, then ( )z t and ( )y t will also be 

determined. Therefore, finding the heteroclinic orbit of system 

(7) is now reduced to seeking a function ( )t such that 

( ) ( )t x t  satisfying (14) and 

( ) ,

( ) ,

t b as t

t b as t





 



 

 
 

or 

( ) ,

( ) ,

t b as t

t b as t







 

 

 
 

Without loss of generality, one may stipulate a definite 

direction as follows: from 1E to 2E corresponds to t  , 

while from 2E  to 1E  corresponds to t  . Let 

1

( ) ( )

, 0

k t

k

k

x t t d e

b and t


 







   

 


           (15) 

Where 0  , is an undetermined constant and 

 1
k

d k   are undetermined coefficient.                                                 

Substituting   (15) into Eq. (14), we get: 

  1 2 3

1

(
kt

k

k

G k d e H H H


 




             (16) 

Where: 
 

    
1

3 3 2 2 2 2 2

1

2 1

11

2

3 2 1

11 1

3

4 3 2 1

(1 ) (3 ) (1 ) ( ) (3 6 ) ,

(4 3 ( ) ,

(1 ( ) ) .

k
kt

i k i

k i

jk
kt

i j i k j

k j i

jk m
kt

i j i m j k m

k m j i

H i a i b i i a i k i a d d e

H k j d d d e

H k m d d d d e







      

  



 



 

 

 

  

  

  

   

         

   

  

 
 
 

 





 

 

and 

3 3 2 2
( ) ( (1 ) 2 )G k k a k b k b                             (17) 

Comparing the coefficients of ( 1)
kt

e k


  of the same power 

terms, we obtain the following results. 

For 1k  , 

3 2
(1 ) 2 0a b b                  (18) 

Which is just the characteristic polynomial of the Jacobian of 
the linearized equation of system (7) evaluated at the 
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equilibrium point
1E  or

2E . Since (8) has the unique negative 

root for given parameters, there exist a 0    such that 

( ) 0G   , and for 1k  , 

3 3 2 2
( ) ( (1 ) 2 ) 0 , 1G k k a k b k b k           

So, for 2k  , 

2

2 1 4
( ) / (2 )d a H G              (19) 

where 

 

  

3 2

4

2 2

(1 ) (3 )

(1 ) (3 6 )

H a b

a a

  

   

    

   
 

For 3k  , 

 
5 6

3

(3 )

H H
d

G 


              (20) 

Where 

 

  

3 3 2 2
2

5 3
2 2 2

1

3

6 1

(1 ) (3 )

(1 ) ( ) (3 6 )

(4 3 )

i i

i

i a i b i
H d d

i a i k i a

H d

  

   

  





   


    

  


 

Finally, for 4k  , 

 7 8 9

( )
k

H H H
d

G k 

 
            (21) 

where:

 

    
1

3 3 2 2 2 2 2

1

1

11

2

2 1

11 1

3

3 2 1

(1 ) (3 ) (1 ) ( ) (3 6 ) ,

(4 3 ( ) ,

(1 ( ) ) .

k

i k i

i

jk

i j i k j

j i

jk m

i j i m j k m

m j i

H i a i b i i a i k i a d d

H k j d d d

H k m d d d d

      

  











 

 

 

  

  

         

   

  







 

 

So   is completely determined by a, b and c, and 

( 2)kd k   is completely determined by , , ,a b c  . 

To this point, the first part of the heteroclinic orbit 
corresponding to  0t   has been determined, see Fig.2. Next, 

its second part corresponding to 0t  will be constructed.   

From the continuity of the solution, we have: 

1

k

k

d 




              (22) 

Which will determine the value of 1d . 

 

 

Figure 2.  Numerical approximation of the heteroclinic and homoclinic orbit 

joining E1 and E2 in the novel system with parameter values: a =0.5,b =0.5 . 

B. The uniform convergence of heteroclinic orbits series 

expansion 

The uniform convergence of the series expansion (15) of 
the heteroclinic orbit is investigated. For simplicity, we only 
consider the case in which system (7) has the special parameter 
set that generates two-scroll attractors. For other parameter 
sets, the proof is similar if the heteroclinic orbit exists. Since 

the value of  and 1d  can be determined from (18)-(22). So, 

( 4)
k

d k  can also, be determined, with
1

k

k

d 




 .  When

0.5, 0.5a b  and b  , the values of  and kd  can be 

determined by (18)-(21). and (22) as, 
2

2 1
0.1178511302d d ,

3

1
d , 

4

4 1
0.008258268791d d  , one can inductivity prove 

that 
2

1
10 , ( 4)

k k

k
d d k

 
   

   We need to seek 
1

d  with
1

k

k

d 




 . Numerical simulation 

shows that a "stable" 
1

d  indeed exist near 5.020592 with 

relative error no greater than 1%. So when ( 4)k 
k

d is 

bounded, that is there exists an 0l  , such that 

, 1, 2, ......
k

d l k  , consequently, 
1

kt

k

k

d e l







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1

kt

k

k

d e






   is convergent on (0, )  . So 
1

kt

k

k

d e







   is 

convergent on (0, )  . similarly, the convergence of 

1

kt

k

k

d e









 on ( , 0) can be also proved.  

Finally, due to Ši'lnikov criterion, one may impose the 
following condition: 

C. Theorem 3 

If 0  and (12) are satisfied, then the system (7) has one 

Ši'lnikov heteroclinic orbit and the corresponding chaos is of 
horseshoe type. 

Obviously, the typical parameters a =0.5,b =0.5  are always 

satisfied. So there exist heteroclinic orbits of Ši'lnikov type, 
and as a result, there exist a countable number of Smale 
horseshoes. Therefore, there exists an invariant set constituting 
the complex attractor. That is the essence of the geometric 
structure of the attractor. 

 

IV. THE EXISTENCE OF HOMOCLINIC ORBITS 

In this part, we will investigate the undetermined 
coefficient method   to prove the existence of homoclinic orbits 
of system (7).  

From (7), we find that: 

2

( ) ( )
,

z x x z bz b
y y

x x

 
             (23) 

Substituting (23) into the first   equation of system (7) gives  

2
.
dx

x x z b
dt

              (24) 

Then, solving (24) yields: 

 2 2 2

0

0

(2 2 ( ))

t

t s
x t e b z s e ds c


  

 
 
 
           (25) 

Next, substituting (23) and (25) into the second equation of 
system (7) leads to 

2 2

1 1
(( 1) ) ( )zH H a z ab b z z b                (26) 

Where 

2 2

1 0

0

(2 2 ( ))

t

t s
H e b z s e ds c


  

 
 
 
           (27) 

If ( )z t  is found, then ( )x t and ( )y t will also be 

determined. Therefore, finding the homoclinic orbit of system 

(7) is now reduced to seeking a function ( )t  such that 

( ) ( )t z t  satisfying (26) and 

( ) ,t a as t    

Let: 

1

( ) ( ) , 0
kdt

k

k

z t t a d e t




                (28) 

and 

0

1

2
2

k

k

k
c b d

k









 


  

Where 0  , is an undetermined constant and  1
k

d   

are undetermined coefficient, Then 

1

1

2
2

kt

k

k

k
H b d e

k









 


 
 
 
            (29) 

Substituting in the equation (26) 

Then, (28) can be written in the following form: 

1 2

1

( )
kt

k

k

G k d e H H







            (30) 

where 

 2 2

1

1 1

1 1

2 1 2 1

1

2

1 2 1

2 ( 1)
2

( )
4

( 2)

( )
4

( 2)

kat kt

k k

k k

k k

kat kt

i k i i k i

k i k i

k

kat kt

k i k i

k k i

k
H d e a k k a e

k

i b a
i d d e d d e

k

i
H d e d d e

k








 












 

 

   

 

   

  



  

   







 


   
  
  

   
   
   

   
   
   

 

  

 

 

and 

2 2( )2
( ) (( 1) 2 )

2

ab b k
G k b a k k b k

k


   




      


 

Comparing the coefficients of ( 1)
k t

e k


  of the same 

power terms, we obtain the following results. For 1,k   

3 2
( ) (1 ) 2 0G a b b                   (31) 

Which is just the characteristic polynomial of the Jacobian 
of the linearized equation of system (7) evaluated at both of 

equilibrium points 
1,2

E . 

Since (8) has the unique negative root for given parameters, 

there exist a 0    such that ( ) 0F   , and for 1k  ,  

3 2
( ) ( ) (1 )( ) 2 0F k k a k b k b          

That is 

3 2
( ) ( ) (1 )( ) 2 , 1G k k a k b k b k           

So, for 2k  , 

 
2 3

/ (2 )d H G   
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 
2 2

2 2

3

1 1

2 2

1 1

2 ( 1)
2

( )
4 ,

( 2)

k k

k k

i k i i k i

i i

k
H d a k k d

k

i b a
i d d d d

k


 








 

 

 

  



 



  
  
  

 
 
 

 

 

 

for 3k  , 

 4 5
/ ( )

k
d H H G k   

where 

 2 2

4

1 1

1 1

1 1

11

5

2 1

2 ( 1)
2

( )
4

( 2)

( )
4

( 2)

k k

k k

k k

k k

i k i i k i

i i

jk

i k i

j i

k
H d a k k a

k

i b a
i d d d d

k

i
H d d

k


 












 

 

 

 





 

  



 



 


   
  
  

   
   
   

   
   
   

 

 



 

where, so   is completely determined by a, b and c, and 

( 2)kd k    is completely determined by  , ,a b   and 
1d . 

Due to the symmetry of the system, one component of the 
homoclinic orbit of (7) has the following form: 

1

1

, 0

( )

, 0

kt

k

k

kt

k

k

a d e for t

t or

a d e for t
















 



 

 
 
 
 
 
  

         (33) 

From the continuity of the solution, we have: 

1

k

k

d a




             (34) 

Which will determine the value of 1d . 

A. The uniform convergence of homoclinic orbits series 

expansion 

The uniform convergence of the series expansion (33) of 
the homoclinic orbit is investigated. For simplicity, we only 
consider the case in which system (7) has the special parameter 
set that generates two-scroll attractors. For other parameter 
sets, the proof is similar if the heteroclinic orbit exists. 

B. Theorem 4 

If 0  and (14) are satisfied, then the system (7) has one 

Ši'lnikov homoclinic orbit of which one component has the 
form (33), and the corresponding chaos is of horseshoe type. 

Note that: 0  and (14) are satisfied are obviously 

satisfied when 0.5, 0.5a b  with the theorem 1 and theorem 

2. 

V. CONCLUSIONS 

Using the undetermined coefficient method, the existence 
of two types of orbits in the novel system, i.e., heteroclinic and 
homoclinic orbits with the explicit and uniformly convergent 
algebraic expressions, has been proved ((the heteroclinic and 

homoclinic orbits are exist at 
1E and 

2E )). By the Ši'lnikov 

criterion, the novel system has the Smale horseshoe chaos. 
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