

127

International Journal of

Science and Engineering Investigations vol. 6, issue 65, June 2017

ISSN: 2251-8843

Neuroevolution of Autoencoders by Genetic Algorithm

Hidehiko Okada

Faculty of Computer Science and Engineering, Kyoto Sangyo University
(hidehiko@cc.kyoto-su.ac.jp)

Abstract-In this paper, the author experimentally evaluates the
ability of a genetic algorithm in evolutionary training of
autoencoders. An autoencoder is a component of a deep neural
network known as a stacked autoencoder. Optimization of
neural networks by means of evolutionary algorithms is called
neuroevolution. Weights and biases in an autoencoder are
optimized by the genetic algorithm so that the autoencoder can
precisely reproduce its input data. A dataset of handwritten
digits is used in the experiment. Results showed that the
genetic algorithm could evolve autoencoders that reproduced
the training and test data better as the autoencoders included
more hidden units. A clear trade-off was observed between the
reproduction accuracy and the encoding efficiency.

Keywords- Neural Network, Evolutionary Algorithm,

Optimization

I. INTRODUCTION

Deep neural networks and their learning algorithms have
been actively researched recently [1-14]. A stacked
autoencoder is a kind of the deep neural network, where an
autoencoder is a kind of layered feedforward neural networks
[1,7,8]. An autoencoder can be trained by the well-known
backpropagation (BP) algorithm [15], but the training of neural
networks by the BP algorithm are likely to get trapped in an
undesirable local minimum because the algorithm is based on a
gradient decent method. Besides, several methods are proposed
for training neural networks by using evolutionary algorithms,
known as neuroevolution and evolutionary neural networks
[16,17]. An advantage of evolutionary algorithms over the BP
in training neural networks is that evolutionary algorithms can
globally search solutions well and thus the trained neural
networks are less likely trapped in an undesirable local
minimum [18-23]. Therefore, we can expect that evolutionary
algorithms can contribute well to the training of autoencoders
(and thus stacked autoencoders). In this paper, the author
applies an evolutionary algorithm to the neuroevolution of
autoencoders. As the evolutionary algorithm the author selects
a genetic algorithm, because genetic algorithms [24,25] are the
most well-known evolutionary algorithms.

II. AUTOENCODER

An autoencoder [1,7,8] is a layered feedforward neural
network where the number of units in the output layer is the
same as the number of units in the input layer. An autoencoder

is trained to output the same values as input values, in other
words, to reproduce their input data. Fig. 1 shows the topology
of an autoencoder adopted in this research. It has a single
hidden layer. Usually, the number of hidden units is smaller
than those of input (output) layer: dimensional input real
vectors are encoded (compressed) to () dimensional real
vectors between the input and hidden layers, and the
dimensional real vectors are decoded (decompressed) to the
dimensional real vectors between the hidden and output layers.
Note that the compression/decompression process is not
lossless but lossy so that the output values are not exactly be
the same as the input values. An autoencoder is trained to make
the error between the input and output values smaller.

Figure 1. Topology of an autoencoder in this research.

The feedforward calculations in this autoencoder are the
same as those in the traditional three layered perceptron. The
following equations (1)-(5) show the calculations.

Input layer:

𝑜𝑢𝑡𝑖
(1)
= 𝑥𝑖 , 𝑖 = 1,2, … , (1)

Hidden layer:

𝑖𝑛𝑗
(2)
= 𝜃𝑗

(2)
+∑ 𝑤𝑖,𝑗

(2)

𝑖
𝑜𝑢𝑡𝑖

(1)
, 𝑗 = 1,2, … , (2)

𝑜𝑢𝑡𝑗
(2)
= 𝑓(𝑖𝑛𝑗

(2)
) , 𝑗 = 1,2, … , (3)

Output layer:

𝑖𝑛𝑖
(3)
= 𝜃𝑖

(3)
+∑ 𝑤𝑗,𝑖

(3)

𝑗
𝑜𝑢𝑡𝑗

(2)
, 𝑖 = 1,2, … , (4)

𝑜𝑢𝑡𝑖
(3)
= 𝑓(𝑖𝑛𝑖

(3)
), 𝑖 = 1,2, … , (5)

1 i… N…

1 j… M…

1 i… N…

Input

Hidden

Output

International Journal of Science and Engineering Investigations, Volume 6, Issue 64, May 2017 128

www.IJSEI.com Paper ID: 66517-21 ISSN: 2251-8843

The symbols in (1)-(5) denote as follows:

𝑥𝑖 Input value to i-th input unit.

𝑜𝑢𝑡𝑖
(1)

 Output value from i-th input unit.

𝑖𝑛𝑗
(2)

 Input value to j-th hidden unit .

𝑤𝑖,𝑗
(2)

 Weight value from i-th input unit to j-th hidden unit.

𝜃𝑗
(2)

 Bias value of j-th hidden unit.

𝑜𝑢𝑡𝑗
(2)

 Output value from j-th hidden unit.

𝑖𝑛𝑖
(3)

 Intput value to i-th output unit.

𝑤𝑗,𝑖
(3)

 Weight value from j-th hidden unit to i-th output unit.

𝜃𝑖
(3)

 Bias value of i-th output unit.

𝑜𝑢𝑡𝑖
(3)

 Output value from i-th output unit.

𝑓() is a unit activation function, where the sigmoidal one is
adopted in this research: 𝑓(𝑥) = 1 (1 +).

Suppose the training data are dimensional real vectors
and the number of the data is .

 = { }, = 1,2, … , (6)

 = (𝑥 ,1, 𝑥 ,2, … , 𝑥 ,) (7)

In (6), is the set of training data. Each training data (in
(7)) is the -dimensional real vector. An autoencoder is trained

(i.e., values of 𝑤𝑖,𝑗
(2)

, 𝜃𝑗
(2)

, 𝑤𝑗,𝑖
(3)

, and 𝜃𝑖
(3)

 are optimized) so that

its output values (𝑜𝑢𝑡𝑖
(3)
, 𝑖 = 1,2, … ,) become closer to its

inputs (𝑥 ,𝑖 , 𝑖 = 1,2, … ,). In other words, the input value 𝑥 ,𝑖

is the target for the output value 𝑜𝑢𝑡𝑖
(3)

. Thus, the error

between 𝑥 ,𝑖 and 𝑜𝑢𝑡𝑖
(3)

 becomes smaller by optimizing the

value of weights and biases.

 =
1

∑(𝑜𝑢𝑡𝑖

(3) − 𝑥 ,𝑖)
2

𝑖=1

 (8)

 =
1

∑

𝐷

 =1

 (9)

 in (8) denotes the error for (1), and
 in (9) denotes the average error over the entire training data
(1).

III. EVOLUTIONARY TRAINING BY GENETIC ALGORITHM

Instead of the BP, a genetic algorithm (GA) is adopted as
the training method of the autoencoder in this research. A GA
is a population-based multi-point search method, whereas the
BP is a single-point search method. Because of this difference,
a GA is better than the BP in searching solutions globally. It
was reported that an evolutionary algorithm could optimize
neural networks better than the BP did [18-23]. Optimization of
neural networks by means of evolutionary algorithms is called
neuroevolution [16,17]. In this paper, the author reports
experimental results on the neuroevolution of autoencoders.

There are two types of neuroevolution methods: (A) the
topology of a neural network (e.g., the number of hidden
layers, the number of units in a hidden layer) is fixed and the
weights are optimized, or (B) both of the topology and the
weights are simultaneously optimized. In this paper, the author
adopts the former method. The autoencoder with the topology
shown in Fig.1 includes 2 (= +) weights and
 + biases. Thus, the autoencoder includes 2 + +
parameters in total. This parameter consists of a 2 + +
 dimensional real vector and the vector is treated as the
genotype in an evolutionary algorithm. The phenotype in the
algorithm is the autoencoder in Fig.1. Evolutionary operators
are applied to the 2 + + real values to optimize them
so that the error becomes smaller. The error value in (9) is
calculated with the training data and the output values of an
autoencoder.

The evolutionary processes of a genetic algorithm in this
paper is as follows:

Step1: Initialization

Step2: Evaluation

Step3: Conditional Termination

Step4: Crossover and Mutation

Step5: Goto Step2

In Step1, genotype values (2 + + real values) are
initialized with random numbers for each of individuals,
where denotes the population size. The value of is given.
The domain range of each genotype value should be neither too
large nor too small in this research, because the value is used as
a weight or bias value in a neural network. In Step2, fitness of
new individuals (those with new genotype values) are
evaluated. In this research, the fitness is based on the error in
(9). An individual with a smaller error fits better (and thus
ranked higher). In Step3, the loop of evolutionary processes is
finished if a given termination condition is met. In this
research, the loop is finished if the number of generations is
reached to a given limit. In Step4, new offspring individuals
are produced by using current individuals as parents. New
genotype values for the offspring individuals are determined by
using the genotype values of parent individuals. Step4 consists
of the following sub-steps:

Step4-1: Elitism

Step4-2: Selection of two parent individuals

Step4-3: Crossover

Step4-4: Mutation

Step4-5: Conditional Termination

Step4-6: Goto Step4-2

In Step4-1, the best individuals in the parent population
are copied to the offspring population, where is a given
number. This process aims at preserving “elite” individuals.
The remaining - individuals in the offspring population are
determined in the loop of Steps 4-2 – 4-6. In Step4-2, two
individuals are selected from the parent population. In this

International Journal of Science and Engineering Investigations, Volume 6, Issue 64, May 2017 129

www.IJSEI.com Paper ID: 66517-21 ISSN: 2251-8843

research, the tournament selection is adopted. In Step4-3, a
new offspring individual is produced by applying a crossover
method to the two parent individuals selected in Step4-2. In
this research, the blend crossover [26] is adopted. In Step4-4,
each individual newly produced by the crossover (Step4-3) is
randomly mutated. Each of the real 2 + + values in
the genotype vector of an individual is randomly initialized
under a given small probability. In Step4-5, the loop of
reproduction processes is finished if the number of individuals
newly produced in Steps 4-2 – 4-6 reaches to - . Thus, the
loop of Steps 4-2 – 4-6 is repeated - times.

IV. EVOLUTIONARY TRAINING BY GENETIC ALGORITHM

This section reports an experimental study in which a
dataset of handwritten digits is used as training data. The
dataset is the Optical Recognition of Handwritten Digits Data
Set which is available in the UC Irvine Machine Learning
Repository.
(https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+
of +Handwritten+Digits)

For each of the 10 digits (0,1,…,9), 20 data are randomly
extracted from the data file optdigits.tra. Thus, the total number
of the sampled data is 10 20 = 200. A half of the 200 data is
used as the training data, and the remaining half is used as the
test data. Each data consists of 8 8 = 64 pixels and a pixel is
valued with either of 0,1,…,16 (0: white, 16: black). In this
experiment, the pixel values are normalized to a real value
within the interval [0.0, 1.0] by dividing the values by 16.0.
Figs. 2 and 3 visually show the training and test data
respectively.

Figure 2. Training data in this

experiment.

Figure 3. Test data in this

experiment.

The numbers of units in the input and output layers are 64,
because each training data consists of 64 values. The number
of hidden units is experimentally set to 16, 25, 36 and 49. For
example, the autoencoder with 36 hidden units has 64 36
+36 64 weights and 36+64 biases in total. Thus, the genotype
is a 4708 dimensional real vector for an autoencoder with 36
hidden units.

Parameter values of the genetic algorithm are
experimentally set as follows:

 Initial genotype values: randomly sampled from the
standard normal distribution.

 Limit of genotype values: within the interval [-5.0, 5.0].

 Population size: 100.

 Limit of generations: 10,000.

 Number of elite individuals: 2.

 Tournament size for the selection of parents: 10.

 for the blend crossover: 0.5.

 Mutation probability: 1/D, where D is the genotype length.
D=2128, 3289, 4708, 6385 for the autoencoder with 16,
25, 36, 49 hidden units respectively.

Figs. 4-16 show the results of this experiment. Fig. 4 shows
the error e along with the generations of GA. The graph legend
shows the number of hidden units. Figs. 5-16 visually show the
output by the best autoencoder in the first/last generations. For
example, Figs. 5-7 show the results where the number of
hidden units is 16. Fig. 5 shows the output by the best
autoencoder among the 100 autoencoders in the first
generation. The error between the output in Fig. 5 and the input
in Fig. 2 is large (33.07% per pixel), because the weights and
biases are just randomly initialized. Fig. 6 shows the output by
the best autoencoder in the last generation. The error between
the output in Fig. 6 and the input in Fig.2 is smaller (13.30%
per pixel), but the output is not similar enough to the input. Fig.
7 shows the output by the best autoencoder in the last
generation, where the input is the test data in Fig. 3. The
trained autoencoder could, to a certain extent, reproduce the
input data that is not used for the training, but the output is not
also similar enough to the input. These are because the number
of hidden units is not enough. Figs. 8-10, 11-13 and 14-16
show the results in the same manner as Figs 5-7, where the
numbers of hidden units are 25, 36 and 49 respectively. Figs.
15 and 16 show that the trained autoencoder with 49 hidden
units reproduces the training and test data well.

Figure 4. Decrease of the error along with the generations of GA. The

legend shows the number of hidden units.

International Journal of Science and Engineering Investigations, Volume 6, Issue 64, May 2017 130

www.IJSEI.com Paper ID: 66517-21 ISSN: 2251-8843

Figure 5. Output by the best

autoencoder in the first generation

(#Hidden units: 16, Input: training data,

Error: 33.07%).

Figure 6. Output by the best

autoencoder in the last generation

(#Hidden units: 16, Input: training data,

Error: 13.30%).

Figure 7. Output by the best

autoencoder in the last generation

(#Hidden units: 16, Input: test data,

Error: 14.89%).

Figure 8. Output by the best

autoencoder in the first generation

(#Hidden units: 25, Input: training

data, Error: 30.40%).

Figure 9. Output by the best

autoencoder in the last generation

(#Hidden units: 25, Input: training
data, Error: 10.50%).

Figure 10. Output by the best

autoencoder in the last generation

(#Hidden units: 25, Input: test data,
Error: 11.76%).

Figure 11. Output by the best
autoencoder in the first generation

(#Hidden units: 36, Input: training

data, Error: 26.76%).

Figure 12. Output by the best
autoencoder in the last generation

(#Hidden units: 36, Input: training

data, Error: 10.01%).

As these figures show, the GA could evolve autoencoders
that reproduced the training and test data better as the
autoencoders was equipped with more hidden units. A clear
trade-off was observed between the reproduction accuracy and
the encoding efficiency. Table 1 shows the ratio of the number
of hidden units to the number of input units. An autoencoder
with smaller hidden units includes smaller parameters and
encodes the 64 dimensional input data to less dimensional
code.

Some techniques such as the dropout [27-29] and the sparse
encoding [30-31] are proposed to train deep neural networks by
the BP. These techniques may also contribute to the
evolutionary training. Future work includes the application and
evaluation of these techniques.

Figure 13. Output by the best
autoencoder in the last generation

(#Hidden units: 36, Input: test data,

Error: 11.30%).

Figure 14. Output by the best
autoencoder in the first generation

(#Hidden units: 49, Input: training

data, Error: 29.36%).

Figure 15. Output by the best

autoencoder in the last generation

(#Hidden units: 49, Input: training
data, Error: 8.41%).

Figure 16. Output by the best

autoencoder in the last generation

(#Hidden units: 49, Input: test data,
Error: 9.59%).

TABLE I. THE RATIO OF THE NUMBER OF HIDDEN UNITS TO THE

NUMBER OF INPUT UNITS

#Hidden units 16 25 36 49

Ratio 16/64 = 25.0% 25/64= 39.1% 36/64= 56.1% 49/64= 76.6%

V. CONCLUSION AND FUTURE WORK

The author adopted a genetic algorithm to the evolutionary
training of an autoencoder. The experimental results with the
data of handwritten digits showed that the genetic algorithm
could evolve autoencoders so that it reconstructed both of the
training and test data well if the number of hidden units was

International Journal of Science and Engineering Investigations, Volume 6, Issue 64, May 2017 131

www.IJSEI.com Paper ID: 66517-21 ISSN: 2251-8843

enough. Because an autoencoder is the component of a deep
neural network known as a stacked autoencoder, the results
reported in this paper indicate that a genetic algorithm will
contribute to the training of stacked autoencoders so that they
can work well on tasks such as pattern recognition.
Evolutionary algorithms other than genetic algorithms have
been proposed, e.g., evolution strategies and differential
evolutions. Some swarm intelligence algorithms can also be
adopted to the stochastic training of deep neural networks, e.g.,
particle swarm optimizations and artificial bee colony
algorithms. The author will evaluate, compare and improve the
capabilities of these evolutionary/swarm algorithms in the
training of deep neural networks.

REFERENCES

[1] Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the
dimensionality of data with neural networks. Science, 313(5786), 504-
507.

[2] Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning
algorithm for deep belief nets. Neural computation, 18(7), 1527-1554.

[3] Boureau, Y. L., & Cun, Y. L. (2008). Sparse feature learning for deep
belief networks. In Advances in neural information processing systems
(pp. 1185-1192).

[4] Sutskever, I., & Hinton, G. E. (2008). Deep, narrow sigmoid belief
networks are universal approximators. Neural Computation, 20(11),
2629-2636.

[5] Bengio, Y. (2009). Learning deep architectures for AI. Foundations and
trends in Machine Learning, 2(1), 1-127.

[6] Larochelle, H., Bengio, Y., Louradour, J., & Lamblin, P. (2009).
Exploring strategies for training deep neural networks. Journal of
Machine Learning Research, 10(Jan), 1-40.

[7] Tan, C. C., & Eswaran, C. (2010). Autoencoder Neural Networks: A
Performance Study Based on Image Reconstruction, Recognition and
Compression. LAP Lambert Academic Publishing.

[8] Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P. A.
(2010). Stacked denoising autoencoders: Learning useful representations
in a deep network with a local denoising criterion. Journal of Machine
Learning Research, 11(Dec), 3371-3408.

[9] Salakhutdinov, R., & Hinton, G. (2012). An efficient learning procedure
for deep Boltzmann machines. Neural computation, 24(8), 1967-2006.

[10] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet
classification with deep convolutional neural networks. In Advances in
neural information processing systems (pp. 1097-1105).

[11] Bengio, Y., Courville, A., & Vincent, P. (2013). Representation
learning: A review and new perspectives. IEEE transactions on pattern
analysis and machine intelligence, 35(8), 1798-1828.

[12] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature,
521(7553), 436-444.

[13] Schmidhuber, J. (2015). Deep learning in neural networks: An overview.
Neural Networks, 61, 85-117.

[14] Zhang, S., Choromanska, A. E., & LeCun, Y. (2015). Deep learning
with elastic averaging SGD. In Advances in Neural Information
Processing Systems, 685-693.

[15] Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1988). Learning
representations by back-propagating errors. In Neurocomputing:
foundations of research, James A. Anderson and Edward Rosenfeld
(Eds.). MIT Press, Cambridge, MA, USA, 696-699.

[16] Williams, D. R. G. H. R., & Hinton, G. (1986). Learning representations
by back-propagating errors. Nature, 323(6088), 533-538.

[17] Yao, X. (1999). Evolving artificial neural networks. Proceedings of the
IEEE, 87(9), 1423-1447.

[18] Floreano, D., Dürr, P., & Mattiussi, C. (2008). Neuroevolution: from
architectures to learning. Evolutionary Intelligence, 1(1), 47-62.

[19] Montana, D. J., & Davis, L. (1989). Training feedforward neural
networks using genetic algorithms. IJCAI, 89, 762-767.

[20] Sexton, R. S., Dorsey, R. E., & Johnson, J. D. (1998). Toward global
optimization of neural networks: a comparison of the genetic algorithm
and backpropagation. Decision Support Systems, 22(2), 171-185.

[21] Sexton, R. S., & Gupta, J. N. (2000). Comparative evaluation of genetic
algorithm and backpropagation for training neural networks. Information
Sciences, 129(1), 45-59.

[22] Örkcü, H. H., & Bal, H. (2011). Comparing performances of
backpropagation and genetic algorithms in the data classification. Expert
systems with applications, 38(4), 3703-3709.

[23] Joy, C. U. (2011). Comparing the Performance of Backpropagation
Algorithm and Genetic Algorithms in Pattern Recognition Problems.
International Journal of Computer Information Systems, 2(5), 7-12.

[24] Che, Z. G., Chiang, T. A., & Che, Z. H. (2011). Feed-forward neural
networks training: A comparison between genetic algorithm and back-
propagation learning algorithm. International Journal of Innovative
Computing, Information and Control, 7(10), 5839-5850.

[25] Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and
machine learning. Machine learning, 3(2), 95-99.

[26] Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and
machine learning. Machine learning, 3(2), 95-99.

[27] Eshelman Larry, J., & Schaffer David, J. Real-coded Genetic
Algorithms and Interval-Schemata. Foundations of Genetic Algorithms
2, 187-202, 1993

[28] Dahl, G. E., Sainath, T. N., & Hinton, G. E. (2013, May). Improving
deep neural networks for LVCSR using rectified linear units and
dropout. In Acoustics, Speech and Signal Processing (ICASSP), 2013
IEEE International Conference on (pp. 8609-8613). IEEE.

[29] Gal, Y., & Ghahramani, Z. (2016, June). Dropout as a Bayesian
approximation: Representing model uncertainty in deep learning. In
International Conference on Machine Learning (pp. 1050-1059).

[30] Ba, J., & Frey, B. (2013). Adaptive dropout for training deep neural
networks. In Advances in Neural Information Processing Systems (pp.
3084-3092).

[31] Boureau, Y. L., & Cun, Y. L. (2008). Sparse feature learning for deep
belief networks. In Advances in neural information processing systems
(pp. 1185-1192).

[32] Ng, A. (2011). Sparse autoencoder. CS294A Lecture notes, 72(2011), 1-
19.

	I. Introduction
	II. Autoencoder
	III. Evolutionary Training by Genetic Algorithm
	IV. Evolutionary Training by Genetic Algorithm
	V. Conclusion and Future Work
	References

