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Abstract-In this paper, the author experimentally evaluates the 
ability of a genetic algorithm in evolutionary training of 
autoencoders. An autoencoder is a component of a deep neural 
network known as a stacked autoencoder. Optimization of 
neural networks by means of evolutionary algorithms is called 
neuroevolution. Weights and biases in an autoencoder are 
optimized by the genetic algorithm so that the autoencoder can 
precisely reproduce its input data. A dataset of handwritten 
digits is used in the experiment. Results showed that the 
genetic algorithm could evolve autoencoders that reproduced 
the training and test data better as the autoencoders included 
more hidden units. A clear trade-off was observed between the 
reproduction accuracy and the encoding efficiency.  
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I. INTRODUCTION 

Deep neural networks and their learning algorithms have 
been actively researched recently [1-14]. A stacked 
autoencoder is a kind of the deep neural network, where an 
autoencoder is a kind of layered feedforward neural networks 
[1,7,8]. An autoencoder can be trained by the well-known 
backpropagation (BP) algorithm [15], but the training of neural 
networks by the BP algorithm are likely to get trapped in an 
undesirable local minimum because the algorithm is based on a 
gradient decent method. Besides, several methods are proposed 
for training neural networks by using evolutionary algorithms, 
known as neuroevolution and evolutionary neural networks 
[16,17]. An advantage of evolutionary algorithms over the BP 
in training neural networks is that evolutionary algorithms can 
globally search solutions well and thus the trained neural 
networks are less likely trapped in an undesirable local 
minimum [18-23]. Therefore, we can expect that evolutionary 
algorithms can contribute well to the training of autoencoders 
(and thus stacked autoencoders). In this paper, the author 
applies an evolutionary algorithm to the neuroevolution of 
autoencoders. As the evolutionary algorithm the author selects 
a genetic algorithm, because genetic algorithms [24,25] are the 
most well-known evolutionary algorithms. 

 

II. AUTOENCODER 

An autoencoder [1,7,8] is a layered feedforward neural 
network where the number of units in the output layer is the 
same as the number of units in the input layer. An autoencoder 

is trained to output the same values as input values, in other 
words, to reproduce their input data. Fig. 1 shows the topology 
of an autoencoder adopted in this research. It has a single 
hidden layer. Usually, the number of hidden units is smaller 
than those of input (output) layer:   dimensional input real 
vectors are encoded (compressed) to  (  ) dimensional real 
vectors between the input and hidden layers, and the   
dimensional real vectors are decoded (decompressed) to the   
dimensional real vectors between the hidden and output layers. 
Note that the compression/decompression process is not 
lossless but lossy so that the output values are not exactly be 
the same as the input values. An autoencoder is trained to make 
the error between the input and output values smaller. 

 

 

Figure 1.  Topology of an autoencoder in this research. 

 

The feedforward calculations in this autoencoder are the 
same as those in the traditional three layered perceptron. The 
following equations (1)-(5) show the calculations.  
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The symbols in (1)-(5) denote as follows:  

𝑥𝑖 Input value to i-th input unit. 

𝑜𝑢𝑡𝑖
(1)

 Output value from i-th input unit. 

𝑖𝑛𝑗
(2)

 Input value to j-th hidden unit . 

𝑤𝑖,𝑗
(2)

 Weight value from i-th input unit to j-th hidden unit. 

𝜃𝑗
(2)

 Bias value of j-th hidden unit. 

𝑜𝑢𝑡𝑗
(2)

 Output value from j-th hidden unit. 

𝑖𝑛𝑖
(3)

 Intput value to i-th output unit. 

𝑤𝑗,𝑖
(3)

 Weight value from j-th hidden unit to i-th output unit. 

𝜃𝑖
(3)

 Bias value of i-th output unit. 

𝑜𝑢𝑡𝑖
(3)

 Output value from i-th output unit. 

𝑓() is a unit activation function, where the sigmoidal one is 
adopted in this research: 𝑓(𝑥) = 1 (1 +    ). 

Suppose the training data are   dimensional real vectors 
and the number of the data is  .  

 = {  },  = 1,2, … ,   (6) 

  = (𝑥 ,1, 𝑥 ,2, … , 𝑥 , ) (7) 

In (6),   is the set of training data. Each training data (   in 
(7)) is the  -dimensional real vector. An autoencoder is trained 

(i.e., values of 𝑤𝑖,𝑗
(2)

, 𝜃𝑗
(2)

, 𝑤𝑗,𝑖
(3)

, and 𝜃𝑖
(3)

 are optimized) so that 

its output values (𝑜𝑢𝑡𝑖
(3)
, 𝑖 = 1,2, … ,  ) become closer to its 

inputs (𝑥 ,𝑖 , 𝑖 = 1,2, … ,  ). In other words, the input value 𝑥 ,𝑖  

is the target for the output value 𝑜𝑢𝑡𝑖
(3)

. Thus, the error 

between 𝑥 ,𝑖  and 𝑜𝑢𝑡𝑖
(3)

 becomes smaller by optimizing the 

value of weights and biases.  

  =
1

 
∑(𝑜𝑢𝑡𝑖
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2

 

𝑖=1
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 =
1

 
∑  

𝐷

 =1

 (9) 

   in (8) denotes the error for    (      1   ), and 
  in (9) denotes the average error over the entire training data   
(     1   ).  

 

III. EVOLUTIONARY TRAINING BY GENETIC ALGORITHM 

Instead of the BP, a genetic algorithm (GA) is adopted as 
the training method of the autoencoder in this research. A GA 
is a population-based multi-point search method, whereas the 
BP is a single-point search method. Because of this difference, 
a GA is better than the BP in searching solutions globally. It 
was reported that an evolutionary algorithm could optimize 
neural networks better than the BP did [18-23]. Optimization of 
neural networks by means of evolutionary algorithms is called 
neuroevolution [16,17]. In this paper, the author reports 
experimental results on the neuroevolution of autoencoders. 

There are two types of neuroevolution methods: (A) the 
topology of a neural network (e.g., the number of hidden 
layers, the number of units in a hidden layer) is fixed and the 
weights are optimized, or (B) both of the topology and the 
weights are simultaneously optimized. In this paper, the author 
adopts the former method. The autoencoder with the topology 
shown in Fig.1 includes 2   (=   +  )  weights and 
 +  biases. Thus, the autoencoder includes 2  + +   
parameters in total. This parameter consists of a 2  + +
  dimensional real vector and the vector is treated as the 
genotype in an evolutionary algorithm. The phenotype in the 
algorithm is the autoencoder in Fig.1. Evolutionary operators 
are applied to the 2  + +   real values to optimize them 
so that the error becomes smaller. The error value   in (9) is 
calculated with the training data and the output values of an 
autoencoder. 

The evolutionary processes of a genetic algorithm in this 
paper is as follows:  

Step1: Initialization 

Step2: Evaluation 

Step3: Conditional Termination 

Step4: Crossover and Mutation 

Step5: Goto Step2 

In Step1, genotype values (2  + +   real values) are 
initialized with random numbers for each of   individuals, 
where   denotes the population size. The value of   is given. 
The domain range of each genotype value should be neither too 
large nor too small in this research, because the value is used as 
a weight or bias value in a neural network. In Step2, fitness of 
new individuals (those with new genotype values) are 
evaluated. In this research, the fitness is based on the error in 
(9). An individual with a smaller error fits better (and thus 
ranked higher). In Step3, the loop of evolutionary processes is 
finished if a given termination condition is met. In this 
research, the loop is finished if the number of generations is 
reached to a given limit. In Step4, new offspring individuals 
are produced by using current individuals as parents. New 
genotype values for the offspring individuals are determined by 
using the genotype values of parent individuals. Step4 consists 
of the following sub-steps:  

Step4-1: Elitism 

Step4-2: Selection of two parent individuals 

Step4-3: Crossover 

Step4-4: Mutation 

Step4-5: Conditional Termination 

Step4-6: Goto Step4-2 

In Step4-1, the best   individuals in the parent population 
are copied to the offspring population, where   is a given 
number. This process aims at preserving “elite” individuals. 
The remaining  -  individuals in the offspring population are 
determined in the loop of Steps 4-2 – 4-6. In Step4-2, two 
individuals are selected from the parent population. In this 
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research, the tournament selection is adopted. In Step4-3, a 
new offspring individual is produced by applying a crossover 
method to the two parent individuals selected in Step4-2. In 
this research, the blend crossover [26] is adopted. In Step4-4, 
each individual newly produced by the crossover (Step4-3) is 
randomly mutated. Each of the real 2  + +  values in 
the genotype vector of an individual is randomly initialized 
under a given small probability. In Step4-5, the loop of 
reproduction processes is finished if the number of individuals 
newly produced in Steps 4-2 – 4-6 reaches to  - . Thus, the 
loop of Steps 4-2 – 4-6 is repeated  -  times.  

 

IV. EVOLUTIONARY TRAINING BY GENETIC ALGORITHM 

This section reports an experimental study in which a 
dataset of handwritten digits is used as training data. The 
dataset is the Optical Recognition of Handwritten Digits Data 
Set which is available in the UC Irvine Machine Learning 
Repository. 
(https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+ 
of +Handwritten+Digits) 

For each of the 10 digits (0,1,…,9), 20 data are randomly 
extracted from the data file optdigits.tra. Thus, the total number 
of the sampled data is 10   20 = 200. A half of the 200 data is 
used as the training data, and the remaining half is used as the 
test data. Each data consists of 8   8 = 64 pixels and a pixel is 
valued with either of 0,1,…,16 (0: white, 16: black). In this 
experiment, the pixel values are normalized to a real value 
within the interval [0.0, 1.0] by dividing the values by 16.0. 
Figs. 2 and 3 visually show the training and test data 
respectively. 

 

 

Figure 2.  Training data in this 

experiment. 

 

Figure 3.  Test data in this 

experiment. 

 

The numbers of units in the input and output layers are 64, 
because each training data consists of 64 values. The number 
of hidden units is experimentally set to 16, 25, 36 and 49. For 
example, the autoencoder with 36 hidden units has 64 36 
+36 64 weights and 36+64 biases in total. Thus, the genotype 
is a 4708 dimensional real vector for an autoencoder with 36 
hidden units. 

Parameter values of the genetic algorithm are 
experimentally set as follows:  

 Initial genotype values: randomly sampled from the 
standard normal distribution. 

 Limit of genotype values: within the interval [-5.0, 5.0]. 

 Population size: 100. 

 Limit of generations: 10,000. 

 Number of elite individuals: 2. 

 Tournament size for the selection of parents: 10. 

   for the blend crossover: 0.5. 

 Mutation probability: 1/D, where D is the genotype length. 
D=2128, 3289, 4708, 6385 for the autoencoder with 16, 
25, 36, 49 hidden units respectively.  

Figs. 4-16 show the results of this experiment. Fig. 4 shows 
the error e along with the generations of GA. The graph legend 
shows the number of hidden units. Figs. 5-16 visually show the 
output by the best autoencoder in the first/last generations. For 
example, Figs. 5-7 show the results where the number of 
hidden units is 16. Fig. 5 shows the output by the best 
autoencoder among the 100 autoencoders in the first 
generation. The error between the output in Fig. 5 and the input 
in Fig. 2 is large (33.07% per pixel), because the weights and 
biases are just randomly initialized. Fig. 6 shows the output by 
the best autoencoder in the last generation. The error between 
the output in Fig. 6 and the input in Fig.2 is smaller (13.30% 
per pixel), but the output is not similar enough to the input. Fig. 
7 shows the output by the best autoencoder in the last 
generation, where the input is the test data in Fig. 3. The 
trained autoencoder could, to a certain extent, reproduce the 
input data that is not used for the training, but the output is not 
also similar enough to the input. These are because the number 
of hidden units is not enough. Figs. 8-10, 11-13 and 14-16 
show the results in the same manner as Figs 5-7, where the 
numbers of hidden units are 25, 36 and 49 respectively. Figs. 
15 and 16 show that the trained autoencoder with 49 hidden 
units reproduces the training and test data well. 

 

 
Figure 4.  Decrease of the error along with the generations of GA. The 

legend shows the number of hidden units. 



International Journal of Science and Engineering Investigations, Volume 6, Issue 64, May 2017 130 

www.IJSEI.com             Paper ID: 66517-21 ISSN: 2251-8843 

 

Figure 5.  Output by the best 

autoencoder in the first generation 

(#Hidden units: 16, Input: training data, 

Error: 33.07%). 

 

Figure 6.  Output by the best 

autoencoder in the last generation 

(#Hidden units: 16, Input: training data, 

Error: 13.30%).  

 

Figure 7.  Output by the best 

autoencoder in the last generation 

(#Hidden units: 16, Input: test data, 

Error: 14.89%).  

 

Figure 8.  Output by the best 

autoencoder in the first generation 

(#Hidden units: 25, Input: training 

data, Error: 30.40%).  

 

Figure 9.  Output by the best 

autoencoder in the last generation 

(#Hidden units: 25, Input: training 
data, Error: 10.50%).  

 

Figure 10.  Output by the best 

autoencoder in the last generation 

(#Hidden units: 25, Input: test data, 
Error: 11.76%).  

 

Figure 11.  Output by the best 
autoencoder in the first generation 

(#Hidden units: 36, Input: training 

data, Error: 26.76%).  

 

Figure 12.  Output by the best 
autoencoder in the last generation 

(#Hidden units: 36, Input: training 

data, Error: 10.01%).   

 

As these figures show, the GA could evolve autoencoders 
that reproduced the training and test data better as the 
autoencoders was equipped with more hidden units. A clear 
trade-off was observed between the reproduction accuracy and 
the encoding efficiency. Table 1 shows the ratio of the number 
of hidden units to the number of input units. An autoencoder 
with smaller hidden units includes smaller parameters and 
encodes the 64 dimensional input data to less dimensional 
code. 

Some techniques such as the dropout [27-29] and the sparse 
encoding [30-31] are proposed to train deep neural networks by 
the BP. These techniques may also contribute to the 
evolutionary training. Future work includes the application and 
evaluation of these techniques. 

 

 

Figure 13.  Output by the best 
autoencoder in the last generation 

(#Hidden units: 36, Input: test data, 

Error: 11.30%).  

 

Figure 14.  Output by the best 
autoencoder in the first generation 

(#Hidden units: 49, Input: training 

data, Error: 29.36%).   

 

Figure 15.  Output by the best 

autoencoder in the last generation 

(#Hidden units: 49, Input: training 
data, Error: 8.41%).  

 

Figure 16.  Output by the best 

autoencoder in the last generation 

(#Hidden units: 49, Input: test data, 
Error: 9.59%).  

TABLE I.  THE RATIO OF THE NUMBER OF HIDDEN UNITS TO THE 

NUMBER OF INPUT UNITS 

#Hidden units 16 25 36 49 

Ratio 16/64 = 25.0% 25/64= 39.1% 36/64= 56.1% 49/64= 76.6% 

 

V. CONCLUSION AND FUTURE WORK 

The author adopted a genetic algorithm to the evolutionary 
training of an autoencoder. The experimental results with the 
data of handwritten digits showed that the genetic algorithm 
could evolve autoencoders so that it reconstructed both of the 
training and test data well if the number of hidden units was 
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enough. Because an autoencoder is the component of a deep 
neural network known as a stacked autoencoder, the results 
reported in this paper indicate that a genetic algorithm will 
contribute to the training of stacked autoencoders so that they 
can work well on tasks such as pattern recognition. 
Evolutionary algorithms other than genetic algorithms have 
been proposed, e.g., evolution strategies and differential 
evolutions. Some swarm intelligence algorithms can also be 
adopted to the stochastic training of deep neural networks, e.g., 
particle swarm optimizations and artificial bee colony 
algorithms. The author will evaluate, compare and improve the 
capabilities of these evolutionary/swarm algorithms in the 
training of deep neural networks.  

 

REFERENCES 

[1] Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the 
dimensionality of data with neural networks. Science, 313(5786), 504-
507.  

[2] Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning 
algorithm for deep belief nets. Neural computation, 18(7), 1527-1554. 

[3] Boureau, Y. L., & Cun, Y. L. (2008). Sparse feature learning for deep 
belief networks. In Advances in neural information processing systems 
(pp. 1185-1192). 

[4] Sutskever, I., & Hinton, G. E. (2008). Deep, narrow sigmoid belief 
networks are universal approximators. Neural Computation, 20(11), 
2629-2636. 

[5] Bengio, Y. (2009). Learning deep architectures for AI. Foundations and 
trends in Machine Learning, 2(1), 1-127. 

[6] Larochelle, H., Bengio, Y., Louradour, J., & Lamblin, P. (2009). 
Exploring strategies for training deep neural networks. Journal of 
Machine Learning Research, 10(Jan), 1-40.  

[7] Tan, C. C., & Eswaran, C. (2010). Autoencoder Neural Networks: A 
Performance Study Based on Image Reconstruction, Recognition and 
Compression. LAP Lambert Academic Publishing. 

[8] Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P. A. 
(2010). Stacked denoising autoencoders: Learning useful representations 
in a deep network with a local denoising criterion. Journal of Machine 
Learning Research, 11(Dec), 3371-3408. 

[9] Salakhutdinov, R., & Hinton, G. (2012). An efficient learning procedure 
for deep Boltzmann machines. Neural computation, 24(8), 1967-2006. 

[10] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet 
classification with deep convolutional neural networks. In Advances in 
neural information processing systems (pp. 1097-1105). 

[11] Bengio, Y., Courville, A., & Vincent, P. (2013). Representation 
learning: A review and new perspectives. IEEE transactions on pattern 
analysis and machine intelligence, 35(8), 1798-1828. 

[12] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 
521(7553), 436-444. 

[13] Schmidhuber, J. (2015). Deep learning in neural networks: An overview. 
Neural Networks, 61, 85-117. 

[14] Zhang, S., Choromanska, A. E., & LeCun, Y. (2015). Deep learning 
with elastic averaging SGD. In Advances in Neural Information 
Processing Systems, 685-693. 

[15] Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1988). Learning 
representations by back-propagating errors. In Neurocomputing: 
foundations of research, James A. Anderson and Edward Rosenfeld 
(Eds.). MIT Press, Cambridge, MA, USA, 696-699. 

[16] Williams, D. R. G. H. R., & Hinton, G. (1986). Learning representations 
by back-propagating errors. Nature, 323(6088), 533-538. 

[17] Yao, X. (1999). Evolving artificial neural networks. Proceedings of the 
IEEE, 87(9), 1423-1447. 

[18] Floreano, D., Dürr, P., & Mattiussi, C. (2008). Neuroevolution: from 
architectures to learning. Evolutionary Intelligence, 1(1), 47-62. 

[19] Montana, D. J., & Davis, L. (1989). Training feedforward neural 
networks using genetic algorithms. IJCAI, 89, 762-767. 

[20] Sexton, R. S., Dorsey, R. E., & Johnson, J. D. (1998). Toward global 
optimization of neural networks: a comparison of the genetic algorithm 
and backpropagation. Decision Support Systems, 22(2), 171-185. 

[21] Sexton, R. S., & Gupta, J. N. (2000). Comparative evaluation of genetic 
algorithm and backpropagation for training neural networks. Information 
Sciences, 129(1), 45-59. 

[22] Örkcü, H. H., & Bal, H. (2011). Comparing performances of 
backpropagation and genetic algorithms in the data classification. Expert 
systems with applications, 38(4), 3703-3709. 

[23] Joy, C. U. (2011). Comparing the Performance of Backpropagation 
Algorithm and Genetic Algorithms in Pattern Recognition Problems. 
International Journal of Computer Information Systems, 2(5), 7-12. 

[24] Che, Z. G., Chiang, T. A., & Che, Z. H. (2011). Feed-forward neural 
networks training: A comparison between genetic algorithm and back-
propagation learning algorithm. International Journal of Innovative 
Computing, Information and Control, 7(10), 5839-5850. 

[25] Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and 
machine learning. Machine learning, 3(2), 95-99. 

[26] Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and 
machine learning. Machine learning, 3(2), 95-99. 

[27] Eshelman Larry, J., & Schaffer David, J. Real-coded Genetic 
Algorithms and Interval-Schemata. Foundations of Genetic Algorithms 
2, 187-202, 1993 

[28] Dahl, G. E., Sainath, T. N., & Hinton, G. E. (2013, May). Improving 
deep neural networks for LVCSR using rectified linear units and 
dropout. In Acoustics, Speech and Signal Processing (ICASSP), 2013 
IEEE International Conference on (pp. 8609-8613). IEEE. 

[29] Gal, Y., & Ghahramani, Z. (2016, June). Dropout as a Bayesian 
approximation: Representing model uncertainty in deep learning. In 
International Conference on Machine Learning (pp. 1050-1059). 

[30] Ba, J., & Frey, B. (2013). Adaptive dropout for training deep neural 
networks. In Advances in Neural Information Processing Systems (pp. 
3084-3092). 

[31] Boureau, Y. L., & Cun, Y. L. (2008). Sparse feature learning for deep 
belief networks. In Advances in neural information processing systems 
(pp. 1185-1192). 

[32] Ng, A. (2011). Sparse autoencoder. CS294A Lecture notes, 72(2011), 1-
19. 

 

 


	I. Introduction
	II. Autoencoder
	III. Evolutionary Training by Genetic Algorithm
	IV. Evolutionary Training by Genetic Algorithm
	V. Conclusion and Future Work
	References


