

57

International Journal of

Science and Engineering Investigations vol. 6, issue 71, December 2017

ISSN: 2251-8843

Algorithmic Presentation in Order to Resource Scheduling on

Graph According to Time and Cost Parameters with High

Computing Power of Graphic Processor

Naghmeh Kamyar

Department of Computer Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
(Naghmeh_kam@yahoo.com)

Abstract- Using CUDA computer programing and performing
this algorithm on graphics processor increase the speed
considerably. According to high computing power of graphics
processors, this algorithm was turned to CUDA language to be
able to be calculated by graphics processor unit and increase
the speed of calculations.

After implementing and performing different tests we
witnessed the considerable difference in performance time and
manifold speed of algorithm on graphics processing unit
toward central process unit. The main constrain during
designing optimization is time constraint. There are other
constraints such as size, energy consumption and so on during
scheduling. Time budget management is employed for
different designing operations such as cables and gates sizing
and providing library map. This paper aims at presenting an
algorithm which can perform the resources scheduling on
graph according to time and cost parameters in a reasonable
period in a way to have the fastest form with the lowest cost.
So, at first the cheapest maximum flow is introduced which is
one of the most applicable discussions. The important point in
using this algorithm is to find and replacing the parameters of
flow and cost so that this replacement can solve the considered
problem absolutely optimal. The next step is to implement the
algorithm in an acceptable way. First we implement this
algorithm in C++ language and the next step is to implement
this algorithm on graphics processing unit.

Keywords- Graphics Processor, Cost Parameters, Time

Resources, Time Parameter

I. INTRODUCTION

Today, graphics processing units have better computation
power in comparison with new central processors. The
programming models written for central processors are in fact,
s serial model i.e. semi codes of a program hieratically were
read and performed after translation and rarely used paralleling
in data processing. The considered architecture is based on this
model and has no important capabilities for performing several
similar instructions simultaneously. While programming model

of graphic processing programs called flow is a parallel model
and has the capability of using paralleling techniques.
However, new central processors with capabilities such as
Hyper threading, SSE and applying multi core architecture
make paralleling possible but their paralleling rate is much less
than a graphic processor with 320 processing unit. Based on
previous studies, the computing power of a Teslla graphic
processing unit is more than 500 times of the power of an Intel
4-core processor. According to the basic concepts of
paralleling, the graphic processing unit can be called
optimization processors along paralleling duties and data.
Graphic processing units are capable because of their special
architecture and their architecture is not suitable for
implementing a central processing unit. According to current
architecture of x86 platform, there are different devices and
equipment in system that processor managed them and in order
to protect suitable communication and comprehensive
management, the central processing unit needs this kind of
structure and finally slower processing. The reason of naming
graphs is that they can be shown graphically and also this
graphic demonstration helps us understand many graph
properties.

II. LITERATURE

The maximum flow problem was presented by Harris and
Ross as a simplified model of Russian railway in 1954. In
1955, Ford and Fulkerson created the first known algorithm
called Ford-Fulkerson. During time, many improved solution
has been found for maximum flow problem, particularly
Edmonds Shortest Way algorithm and Karp and independent
from Dinitz, Dinitz's cold flow algorithm, Goldenberg and
Tarjan's push-relabel algorithm, Goldenberg and Rao's
blocking Binary flow algorithm. Madry et al.'s electrical flow
algorithm finds a relative optimal maximum flow but it only
works in undirected graphs.

III. PROBLEM ANALYSIS AND IDENTIFYING DEFAULTS

As it was explained before, different algorithms are used in
order to find the cheapest maximum flow in graphs which it

International Journal of Science and Engineering Investigations, Volume 6, Issue 71, December 2017 58

www.IJSEI.com Paper ID: 67117-09 ISSN: 2251-8843

will be explained in detail later. This problem is a combination
of two following problems:

If there is no more capacity constrain, it will turn to the
shortest path. If all costs are zero, it will turn to maximum flow
problem. According to the point above, one of the challenging
problems is to find the shortest path in order to find the lowest
cost that both Bellman-ford and dikstra algorithm are similar
and optimal.

The shortest path problem: in graph theory, the problem of
finding the shortest path is in fact finding a path between two
heads (or nodes) so that the sum of weights of wings minimize.
For example, the problem of finding the fastest way for moving
from one place to another on a map can be considered. In this
situation, the heads demonstrate places and wing show the
parts of path that are weighted based on essential time for
passing them. If we have a weighted graph (including V set of
heads, E set of wings and weight function of f : E → R) and an
element like v, we aim to find a path like P from v to v' so that

()
p P

f p


 would be the shortest path among all existing paths

from v to v'. This problem is sometimes called finding the
shortest path between two heads to be distinguished from other
general forms as follow:

The problem of finding the shortest path from origin in
which the goal is to find the shortest path form origin head v to
other heads in graph. The problem of finding the shortest path
to destination in which the goal is to find the shortest path from
all graph heads to destination head v. the problem of finding
the shortest path between heads in which the goal is to find the
shortest way between each head couple of v and v' in graph.
These general manners have more efficient algorithm
meaningfully. Assume that we have given to each wing e of G
a real number of w(e) which is called its weight. Here, G is
called a weighted graph with the weights on its wings.
Weighted graphs appear in many theory applications of graphs.
For example, in friendship graph, the weights can show the
friendship among people. In communication graph, weights
can show the construction weight or communication maintain.
If H is a sub-graph of a weighted graph, the weights on its

wings are
()

()
e E H

w e


 . Many optimization problems end up

finding a certain sub-graph with the least (or the most) weight
in a weighted graph. An example of these problems is the
shortest path problem which is defined as so: a railway network
connects several cities. Find the shortest path between cities.
What we have to look for is a path with the shortest weight

which connects two and u heads in a weighted graph.

Weights shows the rail distance between couples of cities that
are directly connected then have non-negative weights. It is
obvious that studying the shortest path problem is enough for
simple graphs. So we will assume that G is simple. Also, we
will assume that all weights are positive, however it isn't
considered a serious constrain because if the weight of a wing
is zero, two heads can be put together. We accept that if

Eu  then ()w u   . The most important algorithms for

solving this problem are:

Dijkstra algorithm: it solves the problem of finding the
shortest path between heads from origin to destination unit.
Bellman-Ford algorithm: it solves the shortest path from origin
in a way that the weights on wings can be negative. Floyd-
Warshall algorithm: it solves the shortest path between heads.

IV. DIJKSTRA ALGORITHM

Dijkstra algorithm is one of the graph survey algorithm
which presented by a Dutch computer scientist named Dijkstra
in 1959. Dijkstra algorithm is famous as single-source shortest
path and is similar to Prim's algorithm. If the graph has
negative weight, this algorithm won't work and other
algorithms such as Bellman-Ford having more time complexity
should be applied. The policy of Dijkstra algorithm is similar
to the greedy approach used in Prim's algorithm for finding an
optimal subtree. This algorithm is named after the scientist
presented it, Dijkstra. In addition to the shortest path (,)u  ,

this algorithm finds the shortest path between  and other

heads of G. the main idea is: assume that S is a subgroup of V,

then ,s u s . If ...p u u is one of the shortest paths

between u and s , then (,),u u u s  and p should be the

shortest path (,)u u . In conclusion:

(,) (,)d u u w u  (1)

And the distance between u and s can be calculated with

the formula below:

min

,

(,) { () ()})
u s v s

d u s d u u w u
 

   (2)

This formula is considered as the basis of Dijkstra

algorithm, beginning from { }s u we have
1 1

, , ...
v

s s s


 from

v subgroups that at the end of ith level, the shortest path from

u to all
i

s heads have to be identified. The first step is to

determine the closest head to u and it can be done by

computing (,)d s and selecting a head such as
1

u s so

that
1

(,) (,)d u u d s . According to (2) we have:

min min

, .
(,) { (,) ()} { ()}

u s v s v s
d u s d u u w u w u 

  
     (3)

Therefore, (,)d u s can be easily computed. Now we

consider 1 1
{ , }s u u and assume that 1

p shows 1uu path

which is obviously the shortest path 1
(.)u u . Generally, if

1
{ . , ...},

k k
S u u u and the shortest path

2 1
, ..., ,

k
p p p has

been identified, (,)
k

d u s has been computed by (1) and we

select the kk su 1 head that
1

(,) (,)
k k

d u u d u s


 . Based

on (1) per j k we have:

International Journal of Science and Engineering Investigations, Volume 6, Issue 71, December 2017 59

www.IJSEI.com Paper ID: 67117-09 ISSN: 2251-8843

1 1
(,) (,) (,)

k j j k
d u u d u u w u u

 
  (4)

By adding 1j ku u  to
jp path we obtain the shortest path

1
(,)

k
u u


 . In each step, the paths form a connected graph

called tree. So, this algorithm is considered as a "tree growing"
process and final tree has the characteristic to be the shortest

path (,)u  for each head of  for the distance between

and u . Dijkstra algorithm only determines the distance

between u and all other heads and identifies the shortest path.

On the other hand, the shortest path can be easily achieved by
maintaining the past heads of tree and following them. Dijkstra
algorithm is an example of what Edmonds has called a good
algorithm. A graph theory algorithm will be good if the number
of computational levels for implementing on each G graph is

limited by and  , for example
2

3  . An algorithm whose

implementing needs an exponential number of levels (example

2


), is not efficient for big graphs. In order to show that an
algorithm is good, we precise that the computations in 2 and 3

of diagram need to
(1)

2

  
 and (1)   . A question about

flow diagram is how we can understand that a head belongs to

S or not. Driphas (1969) presented a technique which needs
2

(1)  on the whole. So, if we consider every sum or

comparison as a main computational unit, the required

computational sum for this algorithm is almost

2
5

2


 and the

result will be
2

 . it is said that (,)  function is of (,)g  

level, if there is a positive constant number such as c. so that

per any ,  we have
(,)

(,)
c

g

 

 


 .

Although the problem of the shortest path can be solved by
a good algorithm but there are many other problems in graph
theory that there is no good algorithm for them.

Dijkstra algorithm process is as follows:

1. Selection of origin head

2. Identifying S group including graph heads. At the
beginning this group is empty and by improving
algorithm, this group contains the heads with the shortest
path.

3. It puts the origin head with zero index inside S.

4. For heads out of S, the index is considered as the wing
length + index of previous wing. If head has index out of
group, new index will be the least amount of last index and
wing length + index of previous head.

5. A head with fewer indexes is selected from out of group
and added to S.

6. This job will be continued until the destination head enters
S.

At the end if the destination head has an index, its index
shows the distance between origin and destination. Otherwise,
there is no path between origin and destination.

Also, another index can be considered for each head in
order to find the path. Then, after ending algorithm, the
shortest path will be found between two points by following
the previous heads.

Bellman-Ford algorithm is a graph survey algorithm that
solves the shortest path from origin for weighted graphs with
negative weights. Dijkstra algorithm solves the similar
problems in less time but in that algorithm the weight should
be non-negative. So, practically Bellman-Ford algorithm is
used for graphs with negative weight. It has to be mentioned
that if a flow graph has negative weight that can be obtained
from origin, the shortest path problem will have no answer,
because there will be paths with less and less weight by
surveying the flow. Performing |v|-1 algorithm will be defined
for each v head, dv at the end of ith is equal to weight of
shortest path from origin to v with this condition that the
number of wings has to be i. therefore, at the end of |v|-1
level, dv is equal to the weight of shortest path from origin to
v. the important point is that because there is no negative
weight, the shortest path with maximum |v|-1 wing from
origin to v is the shortest path from origin to v in graph.

The basis of algorithm is relaxation of all graph wings in
each level. (u,v) wing relaxation means if du + weight(u,v)
< dv then du + weight(u,v) = dv. Then if the relaxation of all
wings repeated for |V|th time and d changes after this level, it
may be concluded that graph has a negative flow obtainable
from origin. Then Bellman-Ford algorithm has the capability of
identifying negative flow. This algorithm is so similar to
Dijkstra algorithm with only difference that it starts from one
head and gives index to all neighbor points. Continuing this
process and keeping smaller index, the shortest distance from
origin head to all graph point will be calculated and the shortest
path will be identified between origin and destination.

V. APPLICATIONS

The problem of finding the shortest path is used for finding
path between real locations including traffic on internet maps
example Google maps. If a virtual machine is considered
graphically that heads express manners and wings expresses
traffic, the algorithm can be used to find the shortest path as
tools for finding an optimal tail of selection in order to reach a
particular manner. This algorithm can be used in order to find a
lower bound of needed time for reaching a particular manner.
For example, if heads express the manners of a puzzle like
cube of a head and each directed wings expresses a manner or a
flow, the shortest path algorithms can be used so that these
algorithms may lead to a solution with the least number of
flow. Sometimes in communication network structure or
telecom networks, this problem is called the problem of finding
the least cost or the least delayed path that often have a close
relationship with finding the widest path. The widest path can
be as the same of band width. This problem can be applied in
Robotic, traffic and designing integrated circuits.

International Journal of Science and Engineering Investigations, Volume 6, Issue 71, December 2017 60

www.IJSEI.com Paper ID: 67117-09 ISSN: 2251-8843

VI. THE MAXIMUM FLOW

In maximum flow problem we consider pushing the
maximum flow of an origin head to a destination in a graph by
considering this constrain that flow never can go beyond its
capacity. In optimization theory, the maximum flow includes
finding a practical maximum flow inside a single-origin and
single-destination flow network.

VII. EDMONDS- KARP ALGORITHM

This algorithm wants to find the maximum form origin s to
t destination. This algorithm is similar to Ford-Fulkerson
algorithm and the only difference is that in this algorithm
constrains of Ford-Fulkerson algorithm improves because the
computation of increasing path is implemented by breadth-first
search (bfs). If we perform bfs in Ford-fulkerson algorithm, it
needed more time constrain. The path should be the shortest
path that has the capacity to be found by bfs search and the
wings are allowed to have the same size. The maximum charge
is equal to bfs. The other characteristic of this algorithm is that
the shortest path increases each time. What this algorithm can
do is to find increased path by bfs and if there is increasing
path, it will find the lowest capacity and adds the minimum
capacity to the flow of all wing. In this case, it will find the
maximum charge between origin and destination that is equal
to bfs. The performance of this algorithm is demonstrated in
code below. The input of algorithm: the input of this algorithm
is a graph which has an s origin head and a t destination head
and each capacity is written on each wing. The output of
algorithm: the maximum flow from s to t when there is an
increasing path with characteristics above. The time of
performing this algorithm is . In each time at least one
of the E wings is full and the distance from full wing to origin
should be longer than the last time it was full and this length is
equal to V number of heads.

VIII. IMPLEMENTATION DESCRIPTION

There is a charge network in which directed graph is

(,)G V E with origin Vs and destination Vt and the

wing (,)u v E has (,) 0c u v  capacity, (,) 0f u v  flow

and (,)a u v cost. Our problem is to find the maximum flow

which has the lowest cost among maximum flows that can be
called the lowest cost maximum flow. A graph is considered
including capacity and cost parameters per each flow unit in
wing.

On the left, the first number is pass flow (f), the second
number is the capacity of each wing for flow (CP) and the third
number is the cost of each flow unit (C) in that wing (f/cp/c).
By writing an optimal algorithm and in some parts by using
optimal algorithms such as the shortest path algorithm and
modifying them, the lowest cost maximum flow can be
achieved.

Figure 1. An example graph in order to solve the lowest cost maximum flow

The conditions of G graph

a) Directed

b) There is one resource and one destination ,s t V

c) Each wing includes a positive capacity (,) 0c u v 

d) Each wing has a cost that is a function of flow.

(,) 0a u v 

e) Along with the resource and destination node, the

sum of input flow to a node is equal to the sum of output flows

from the node.

(,)
w V

f s w d


 and (,)
w V

f w t d


 (5)

f) The maximum flow passing a wing cannot go beyond

the capacity of that wing (,) (,)f u v c u v .

On the basis of definition and conditions mentioned before,
we solve this problem as: the paths between origin and
destination are found. In other words, between maximum
flows, the shortest path (Bellman-Ford algorithm) is the
response. Practically Bellman-ford algorithm can obtain the
lowest cost being a function of flow and an example of the
shortest path according to maximum flow paths. According to
the remained capacity of each wing (difference between pass
flow and capacity of each wing) the flow that can be pass
which is practically equal with the minimum remained capacity
between wings of path is computed with cost.

(,)

min ((,) (,))
u v E

c u v f u v


 (6)

If there is no other path (even one wing cannot pass the
considered flow, it practically gets out of path) the algorithm
will practically end up. The sum of input flow to destination
gives the maximum flow.

(,)
in

w E
f w t

 (7)

The cost of graph is concluded:

(,)

(,). (,)
u v E

f u v a u v


 (8)

International Journal of Science and Engineering Investigations, Volume 6, Issue 71, December 2017 61

www.IJSEI.com Paper ID: 67117-09 ISSN: 2251-8843

If there is more than several form to reach the maximum
flow, the form with lowest cost is the solution.

The lowest cost of transmitting a flow unit from origin
node to any node is calculated by Bellman-Ford algorithm.

 , (9)

Then by using the obtained amounts from Bellman-Ford we
began to calculate the maximum flow. On any wing

 (10)

We obtain the maximum pass flow through considered
path.

 (11)

In each flow the cost is obtained according to the formula
below:

 ∑
 (12)

And finally the sum of all pass flows through each path is
equal to maximum flow:

 ∑

 (13)

And the sum of all paths is equal to the lowest cost of flow:

 ∑

 (14)

For example in this graph, maximum 5 unit flow is pushed
from S to T that the achieved paths are as follow:

Figure 2. The first path with the maximum flow

Figure 3. The second path with the maximum flow

Figure 4. The third path with the maximum flow

Then, according to the formula below the cost of each path
is:

 ∑
 (15)

In first path the sum of pass cost is 55.

In second path the sum of pass cost is 45.

In third path the sum of pass cost is 56.

In the following V, E, CP, C, Flow and TotalCost expresses
heads, wings, capacity of flow in each wing, the cost unit per
flow in each wing, the maximum rate of flow to destination
node and the minimum cost of flow to destination,
respectively. In this test, two systems are considered called
system A and system B.

Characteristics of system A:

Cpu: core i3, 3.3 GHZ

Ram : 2GB

Graphic: Nvidia Gforce 210, 1GB

Characteristics of system B:

Cpu: core i7, 3.6 GHZ

Ram : 8GB

Graphic: Nvidia Gforce 620, 1GB

 is the time of performing algorithm C++ and is
the time of performing CUDA algorithm.

In this chapter the algorithm with C++ language is
considered as first algorithm and algorithm with CUDA
language is called second algorithm.

The performance of the cheapest maximum flow with input
and graphs with less than 500 heads, in this part the effect of
the number of nodes and wings on speed and precision of
considered algorithm and objective function (cost) with other
characteristics constant were investigated.

First performance

In first performance the characteristics of example
performance is as follows:

V=4, E=5

International Journal of Science and Engineering Investigations, Volume 6, Issue 71, December 2017 62

www.IJSEI.com Paper ID: 67117-09 ISSN: 2251-8843

TABLE I. THE COST PER FLOW UNIT OF WINGS IN FIRST EXAMPLE

GRAPH

Node 1 2 3 4

1 - 4 8 -

2 - - - 5

3 - 3 - 6

4 - - - -

TABLE II. THE MAXIMUM CAPACITY OF FLOW FROM WING IN FIRST

EXAMPLE GRAPH

Node 1 2 3 4

1 - 1 3 -

2 - - - 3

3 - 2 - 2

4 - - - -

These amounts are obtained for graph by performing
algorithm:

Total Cost = 53, Flow = 4

A: = 16, = 16

B: = 4, = 6

Time complexity of algorithm

The diagram will be as below according to the performance

complexity function of algorithm.

Figure 5. Diagram based on performance complexity function of the time

performance of algorithm in first system according to the time achieved in
first system with C++ and CUDA algorithm performance

Figure 6. Linear diagram based on performance time on first system (less

than 500 heads)

Figure 7. Column chart based on performance time on first system (less than

500 heads)

Figure 8. Difference rate of CUDA and C++ algorithm based on the

performance time on first system (less than 500 heads). The comparison of

two systems in graphs less than 500 heads

International Journal of Science and Engineering Investigations, Volume 6, Issue 71, December 2017 63

www.IJSEI.com Paper ID: 67117-09 ISSN: 2251-8843

Figure 9. The comparison of difference of performance rate on both systems

(less than 500 nodes)

As it can be seen, the results in performances with more
complex data are more satisfying. Toward first tests and
measured output in larger data, the performing time difference
and efficiency of graphic processing unit is obvious. Lower
cost performances of maximum flows with inputs and graphs
with more than 1000 heads resulted in that the difference
between the speed of algorithm on more and more complex
inputs are so considerable. Now in this section, the tests are
conducted on data more than 1000 head.

IX. FIRST PERFORMANCE

In first performance the characteristics of example
performance are as follows:

V = 1000

E = 5000

By performing algorithm, the below amounts are achieved
for graph:

Total Cost = 4456

Flow = 51

A: = 4891, = 1297

B: = 5208, = 1174

The algorithm performance time in first system

According to time achieved in first system by performing
C++ and CUDA algorithm the resulted diagram is as:

Figure 10. Linear diagram based on the performance time on first system

(more than 1000 head)

Figure 11. Column chart based on performance time on first system (more

than 1000 head)

Figure 12. The difference rate of CUDA and C++ algorithm based on
performance time in first system (more than 1000 heads)

International Journal of Science and Engineering Investigations, Volume 6, Issue 71, December 2017 64

www.IJSEI.com Paper ID: 67117-09 ISSN: 2251-8843

Figure 13. The comparison between the differences of performing time on

both systems (more than 1000 heads)

X. CONCLUSION

The main constrain in designing optimization is time
constrain. During scheduling, there are other constrains such as
size, energy consumption and so on. Budget management is
applied for different operations such as gates and cable sizing
and providing library map. The aim of this paper is to present
an algorithm which can do a resource scheduling on graph in a
reasonable time level according to cost and time parameters in
order to have the fastest manner with the lowest cost. At first,
we introduced the lowest cost maximum flow being one of the
most applicable. A very important point in using this algorithm
is to find and replace the parameters with cost and flow so that
this problem can be solved completely optimal. The next step
is to implement the algorithm with acceptable level. First this
algorithm was implemented to C++ language and then
implemented on graphic processing unit. In recent years, the
increasing applications of graphic cards have the researchers
implement processing power on non-graphic applications. As a
result, a new branch in computer science has been created
called computations with all-purpose aims on graphic
processing unit. This field aims at using graphic card as a
computational coprocessor in non-graphic and public
programs. Furthermore, there was a broad modification from
computational industry to parallel computations and almost all
computers by 2010 along with multi core processors have done
transmission operation. Computer industry faces a revolution
of parallel programing to be able to be absolutely effective in
computer science. In conclusion, CUDA nividia has operated
as one of the most important languages designed for parallel
computations.

According to the high computational power of graphic
processor unit, this algorithm is turned to CUDA language to
be able to be computed by graphic processor unit and
computation speed increases. After implementing and
performing different tests we witnessed a considerable
difference in performance time and speed of algorithm on
graphic processing unit toward central processing unit. As it
can be seen from the results, using CUDA programming and
performing this algorithm on graphic processing unit has
increased the speed considerably.

The results from performing algorithm

According to amounts obtained from algorithm we have
witnessed a considerable effect of graph size and flow on speed
and precision of algorithm.

Figure 14. Performance time of algorithm in C++ and CUDA and their

differences in system A

Figure 15. Performance time of algorithm in C++ and CUDA and their
difference in system B

REFERENCES

[1] A. Kahng, S.Mantik, and I.L. Markov. (2002) “Min-Max Placement for
Large- Scale Timing Optimization”, In the proceedings of ACM
International Symposium on Physical Design, pp. 143-148.

[2] Barron J, Fleet DJ, Beauchemin S. (1994) Performance of Optical Flow
Techniques. Int'l J Comp Vision. 12:43–77.

[3] C. Chen, E. Bozorgzadeh, A. Srivastava, and Majid Sarrafzadeh.(2002)
“Budget Management with Applications”. In Algorithmica, vol 34, No.
3, pp. 261- 275.

[4] C. Chen, X. Yang, M. Sarrafzadeh. (2000) “Potential Slack: An
Effective Metric of Combinational Circuit Performance. In the
proceedings of ACM/IEEE International Conference on Computer-
Aided Design, pp. 198-201.

[5] C. Kuo and A. C.-H Wu. (2000)“Delay Budgeting for a Timing-Closure-
Design Method”, In the proceedings of International Conference on
Computer- Aided Design, pp. 202 207.

[6] Chetverikov D. (2003) Applying feature tracking to Particle Image
Velocimetry. International Journal of Pattern Recognition and Artificial
Intelligence. 17:487–504.

International Journal of Science and Engineering Investigations, Volume 6, Issue 71, December 2017 65

www.IJSEI.com Paper ID: 67117-09 ISSN: 2251-8843

[7] E. Bozorgzadeh, S. Ghiasi, A Takahashi, and M. Sarrafzadeh. (2004)
”Optimal Integer Delay Budget Assignment on Directed Acyclic
Graphs”. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems,Vol. 23, No.xx,.

[8] Ford, L.R., Jr.; Fulkerson, D.R. (1962), Flows in Networks, Princeton
University Press.

[9] Ford,L.R.; Fulkerson, D. R.(1956) "Maximal flow through a network".
Canadian Journal of Mathematics 8: 399, 1956.

[10] Gass, Saul I.; Assad, Arjang A. (2005) "Mathematical, algorithmic and
professional developments of operations research from 1951 to 1956".
An Annotated Timeline of Operations Research. International Series in
Operations Research & Management Science 75. pp. 79–110.

[11] Goldberg, A., Tarjan, R.,(1988) A New Approach to the Maximum-flow
Problem, Journal of the Association for Computing Machinery 35, 4,
921–940.

[12] H. R. Lin and T. Hwang.(1995) “Power Reduction by Gate Sizing with
Path- Oriented Slack Calculation”. In the proceedings of ‘IEEE ASP-
DAC, pp. 7 12.

[13] H. Szymanski,(2013) "Max-Flow Min-Cost Routing in a Future-Internet
with Improved QoS Guarantees", In the proceedings of IEEE
Transactions on Communication, Vol. 61, No.4.

[14] H. Youssef, E. Shragowitz. (1955) “Timing Constraints for Correct
Performance”, In the proceedings of ACM/IEEE International
Conference on Computer-Aided Design, 1990.

[15] Harris, T. E.; Ross, F. S. "Fundamentals of a Method for Evaluating Rail
Net Capacities". Research Memorandum (Rand Corporation).

[16] http://www.wikipedia.com

[17] Hu W, Tan T, Wang L, Maybank S. (2004) A Survey on Visual
Surveillance of Object Motion and Behaviors. IEEE Transactions on
Systems, Man, and Cybernetics. 34:334–352.

[18] J. Luo and N. Jha. (2001) ”Battery-Aware Static Scheduling for
Distributed Real-Time Embedded Systems”. In the proceedings of
IEEE/ACM Design Automation Conference.

[19] Kelner, J. A.; Lee, Y. T.; Orecchia, L.; Sidford, A. (2014). "An Almost-
Linear-Time Algorithm for Approximate Max Flow in Undirected
Graphs, and its Multicommodity Generalizations". Proceedings of the
Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms.
p. 217.

[20] Knight, Helen. (2014) "New algorithm can dramatically streamline
solutions to the ‘max flow’ problem". MIT News. Retrieved 8 January.

[21] M. Sarrafzadeh, D. Knol, and G. Tellez.(1997) “Unification of
Budgeting and Placement” In the proceedings of ACM/IEEE Design
Automation Conference, June 1997.

[22] M.Hulkkonen.(2011), "Graphics Processing Unit Utilization in Circuit
Simulation ",.Master's Thesis. Aalto University School of Electrical
Engineering, August.

[23] M.Sarrafzadeh, D. A. Knol, G.E. Tellez. (1997)“A Delay Budgeting
Algorithm Ensuring Maximum Flexibility in Placement In IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, , Vol. 16, No. 11 , pp. 1332 -1341, Nov.

[24] Matov, M. Edvall, Ge Yang, and G. Danuser. (2011) "Optimal-Flow
Minimum-Cost Correspondence Assignment in Particle Flow Tracking".
Comput Vis Image Underst.; 115(4): 531–540, Apr.

[25] Medioni G, Cohen I, Bremond F, Hongeng S, Nevatia R.(2001) Event
Detection and Analysis from Video Streams. IEEE Transactions on
Pattern Analysis and Machine Intelligence. 23:873–889.

[26] Micheli ED, Torre V, Uras S. (1993) The accuracy of the computation
of optical flow and of the recovery of motion parameters. IEEE Trans
Pattern Anal Mach Intell. 15:434–447.

[27] Morris BT, Trivedi MM. (2008) A Survey of Vision-Based Trajectory
Learning and Analysis for Surveillance. IEEE Transactions on Curcuits
and Systems for Video Technology. 18:114–1127..

[28] S. Bakshi and D. Gajski. (1996) “Component Selection for High-
Performance Pipelines”. In IEEE Transactions on Very Large Scale
Integrated Systems, pp. 181-194, Vol. 4, No. 2.

[29] S. Chen, C, Chern, (2000) "Max-Flow Min-Cost Algorithm for A
Supply Chain Network", In the proceedings of APDSI 2000 Full Paper,
July..

[30] S. Ghiasi, K. Nguyen, E. Bozorgzadeh, and M. Sarrafzadeh. (2003) ”On
Computation and Resource Management in an FPGA-based Computing
Environment”. a poster presentation in ACM International Symposium
on Field-Programmable Gate Arrays (FPGA), February.

[31] S. L. Lin and J. Allen. (1986) “MinPlex- A Compactor that Minimizes
the Rounding Rectangle and Individual Rectangles in a Layout”. In the
proceedings of ACM/IEEE Design Automation Conference, pp. 123-130.

[32] Schrijver, A. (2002) "On the history of the transportation and maximum
flow problems". Mathematical Programming 91 (3): 437–445.

[33] Schwartz, B. L. (1966). "Possible Winners in Partially Completed
Tournaments". SIAM Review 8 (3): 302.

[34] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein.(2006) "Maximum Flow". Introduction to Algorithms,
Second Edition. MIT Press and McGraw-Hill. pp. 643–668. ISBN 0-
262-03293-7.

[35] W. Zhang, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, D. Duarte, and
Y. Tsai.(2001) ”Exploiting VLIW schedule slacks for dynamic and
leakage energy reduction ”. In the proceedings of IEEE International
Symposium on Microarchitecture, 2001.

[36] Moavenian, K. (2012) "implementing several examples of parallel
algorithm using multi-core graphic cards", Payam Noor University,
Mashhad.

http://en.wikipedia.org/wiki/D._R._Fulkerson
http://en.wikipedia.org/wiki/Canadian_Journal_of_Mathematics
http://www.wikipedia.com/
http://math.mit.edu/~kelner/Publications/Docs/klos_maxflow_main.pdf
http://math.mit.edu/~kelner/Publications/Docs/klos_maxflow_main.pdf
http://web.mit.edu/newsoffice/2013/new-algorithm-can-dramatically-streamline-solutions-to-the-max-flow-problem-0107.html
http://web.mit.edu/newsoffice/2013/new-algorithm-can-dramatically-streamline-solutions-to-the-max-flow-problem-0107.html
http://www.ncbi.nlm.nih.gov/pubmed/?term=Matov%20A%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Edvall%20MM%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Yang%20G%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Danuser%20G%5Bauth%5D
http://en.wikipedia.org/wiki/SIAM_Review
http://en.wikipedia.org/wiki/Charles_E._Leiserson

	I. Introduction
	II. Literature
	III. Problem analysis and identifying defaults
	IV. Dijkstra algorithm
	V. Applications
	VI. The maximum flow
	VII. Edmonds- Karp algorithm
	VIII. Implementation description
	a) Directed
	b) There is one resource and one destination
	c) Each wing includes a positive capacity
	d) Each wing has a cost that is a function of flow.
	e) Along with the resource and destination node, the sum of input flow to a node is equal to the sum of output flows from the node.
	f) The maximum flow passing a wing cannot go beyond the capacity of that wing.

	IX. First performance
	X. Conclusion
	References

