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Abstract- In this paper, in order to find the optimal dimensions 
of the subreflector for minimizing the effects of aperture 
obstruction, the complex and nonlinear equation related to the 
design of the Cassegrain antenna and feed antenna, which is a 
conical corrugated horn antenna, is presented as a single-
variable equation versus ‘A’, one of the parameters of the 
hyperbolic reflector surface. Then this equation is solved using 
the Newton-Raphson numerical method with high accuracy 
and high speed. At the end of the paper, a design example was 
investigated to reveal the above method and the optimal 
dimensions of the Cassegrain antenna structure were calculated 
using this method. 
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I. INTRODUCTION 

Cassegrain antennas are dual-reflector antennas that have 
many benefits in satellite and terrestrial communications. 
Usually, in these antennas, conical corrugated horn antennas 
are used as feed antenna to create symmetric electric field 
patterns on E and H planes, whereas phase centers are also 
matched on these planes. There are two parabolic and 
hyperbolic reflectors in the Cassegrain antennas, and the feed 
antenna phase center is located on one of the focal points of the 
hyperbolic reflector, and the other focal point of the hyperbolic 
surface corresponds to the focal point of the parabolic surface. 
In this case, the waves that come out of the horn antenna's 
phase center after reflection from hyperbolic surface are 
transmitted toward the parabolic reflector and after reflection 
from the parabolic reflector propagate parallel to the antenna 
axis, and so this antenna has a very high gain.  

The main issue in designing this antenna is to calculate the 
dimensions of the Cassegrain antenna and feed antenna, so that 
the antenna's radiation efficiency be optimal. In [1], the method 
of obtaining a relationship in terms of dimensions and 
specifications of the Cassegrain antenna and the conical 
corrugated horn antenna is investigated so that the efficiency of 
the aperture is maximal. This equation is non-linear and 
complex and can be solved with various numerical methods. 

The methods of solving this equation, which have been used so 
far, have a low convergence rate. 

In this paper, we want to solve this equation using the 
Newton-Raphson method with fast convergence rate and high 
resolution. As far as the author knows, this equation so far has 
not been resolved using this method. In the second part of the 
paper, we first describe the Newton-Raphson method for 
solving non-linear equations, and the iteration relation is 
obtained for solving the problem of designing antenna 
dimensions. Then, in the third section, a design example is 
presented. This example is solved using Newton-Raphson's 
method with high speed and accuracy, and the results are 
presented. 

 

II. THE NEWTON-RAPHSON METHOD FOR SOLVING THE 

DESIGN EQUATION OF CASSEGRAIN  AND FEED ANTENNA 

As shown in Fig.1, The Newton-Raphson method is used to 

solve the nonlinear equation   0xf  [2]. In this method, 

starting with an initial point 0x , a tangent line is drawn first on 

the curve at the point   00 , xfx . The intersection of this line 

with the x-axis, the point 1x  , is considered as the next estimate 

of the root of the function. This process continues to the extent 

that the difference between 1 nn xx reaches the required 

amount  . We find the following relation to get the iteration 

relation of the Newton-Raphson's method, 

 

 
Figure 1.  Graphical description of solving a single-valued equation by 

Newton-Raphson method. 
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Therefore, in the ith repetition step, we can write the 
following equation for calculating a new estimate of the root 
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It is shown that in this method, the true error in the ith 
repetition step is related to the true error in (i-1)th step  as 
follows 
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that iE  is the difference between ix and the real answer of the 

problem. Therefore, in this method by choosing an appropriate 
initial point in a sequence that function derivative does not 
become zero, depending on the function form around the root, 
the function root can be found with high speed and precision. 
The design equation for Cassegrain antenna to minimize the 
amount of aperture obstruction is as follows [1] 
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in this relation, ‘A’ is the surface parameter of the hyperbolic 
reflector in the Cassegrain antenna, ‘e’ is the eccentricity factor 
of the Cassegrain antenna and the hyperbolic reflector, and is 
related with magnification factor of the antenna, M, as follows 
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In (4), 0 is the subtended angle of the parabolic reflector, 

and it is obtained in terms of the ratio of parabolic reflector 
diameter, D, to F, which is the focal length of the parabolic 
reflector, as 
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fa is the radius of the feed antenna openings considering 

the depth of the slot on the antenna aperture plane, and equals 
with, daa f  ,  that ‘a’ is the radius of the outlet of the horn 

antenna, regardless of the depth of the slot, and ‘d’ is the depth 
of the slot located at the outlet of the feed antenna and may be 
obtained as following, 
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where   is the free space wavelength and  /2k . In 

relation (4), pL  is the displacement of the phase center of the 

feed antenna relative to the antenna aperture plane. It depends 
on a parameter called slant ratio of the horn, S, and the bending 
radius of the cone, R, and is determined according to Table 1. 
[3]. ‘S’ is obtained by,  
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that ‘a’ is the radius of the feed antenna output, regardless of 
the depth of the output slot, and R is the bending radius of the 
cone. 

In the design of the antenna dimensions, Fig. 2 is used [3], 
which gives the beam of the electric field of the conical 
corrugated horn antenna in terms of (9) for different values of 
S,  

   /sin2 0a                                                                           (9) 

In (9), 0  is the subreflector subtended angle and is 

obtained from, 
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Where eF  is the equivalent focal length of the Cassegrain 

antenna and equals M times F. When using Fig. 2, we assume 
that the relative electric field intensity at antenna edges is          
-11db = 0.2818 [4] which corresponds to the case of optimum 
radiation efficiency.  

 

TABLE I.  VARIATIONS OF THE RATIO OF pL  TO R VERSUS CHANGES IN 

S PARAMETER. 

R

L p
 

 

S 
R

L p
 

 

S 

0.386 0.36 0 0 

0.464 0.4 0.005 0.04 

0.542 0.44 0.02 0.08 
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0.783 0.64 0.24 0.28 

0.811 0.68 0.31 0.32 
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Figure 2.  Variation of the relative electric field intensity of the conical 

corrugated horn antenna in terms of  variations of the slant ratio factor. 
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With regard to the above, if we consider the proper values 
for the parameter M, the magnification of the Cassegrain 
antenna and  S, the slant ratio of the horn antenna, in (4) all the 
parameters will be determined, except for the parameter A.  We 
use the Newton-Raphson method for solving (4). The repetition 
equation in accordance with (2) is considered as follows 

 
 i

i
ii

Af

Af
AA


1                                                           (11) 

 iAf  is obtained from (4) and  iAf   may be calculated from  
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After some algebraic simplifications we have, 
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Now, using an example, the initial design steps of the 
Cassegrain antenna and the feed antenna and the method for 
obtaining parameter ‘A’ are brightened. 

 

III. DESIGN EXAMPLE WHICH DESCRIBES THE STEPS TO FIND 

THE OPTIMAL DIMENSIONS OF THE SUBREFLECTOR  

Suppose we want to design a Cassegrain antenna and a 
conical corrugated horn antenna that receives satellite waves at 
center frequency of 15 GHz, and the parabolic reflector 
diameter is calculated equal to 8 (m), based on the link budget 
and the received signal strength. Suppose that the antenna 
magnification is optionally chosen as 5 and the parameter S, 
the slant factor of the feed antenna, is 0.2. In this case, 
considering the conditions for creating the smallest obstruction, 
we want to find the dimensions of the hyperbolic reflector by 
solving (4) with Newton-Raphson numerical method. Initially, 
according to (5), e = 1.5, and if the ratio F / D = 0.5 is 

considered, then from (6) 1.530  , and given that 

5.2//  DMFDFe  , from(10), 42.110  , and therefore, 

with consideration of the Fig.1  diagram , For the case where 

the relative field strength at the antenna edges is -11 dB = 
0.2818 and for S = 0.2, we have: 
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So  cmdaa f 71.651.02.6   

To calculate PL , knowing R and S we can use Table 1. 

From (8), 
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From Table 1, for S=0.2, 124.0
R

Lp
 and so, 

 cmLp 96.505.48124.0  . 

Now all the parameters in (4) are clear and this equation 
can be solved. To solve this equation by the Newton-Raphson 
method, it is necessary to select an initial value that, in 
accordance with equation (3), the derivative of the function in 
the neighborhood of that point does not get close to zero. To do 
this, you need to draw a function to examine its behavior 
around the root. Given the physics of the problem, knowing 
that the feed phase center locates in the space between the 
parabolic reflector and the hyperbolic reflector and also since 
the focal length of the parabolic reflector is 4 meters, so the 
maximum of 2C can be four meters, and since the ratio C / A = 
e is greater than 1, So we can consider the range of variations 
of A in the range  between 0 and 2m. With reference to Fig. 3, 
it is seen that the root of equation (4) is located around 0.5 and 
the root can be obtained by selecting the appropriate initial 
point. Here we start with 3.00 A  to begin the root finding 

process and a computer program using MATLAB [5] is 

written. The values of iA and  iAf  for the sequential 

iteration of the numerical method are given in Table 2. Here, 
the accuracy of the calculation is assumed to be 0.005, that is, 

when the difference, 005.01  ii AA satisfies, the root 

finding process stops. 
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Figure 3.  Ddiagram of equation (4). 

 

TABLE II.  ITERATIONS OF THE NUMERICAL METHOD AND THE VALUES 

OF THE FUNCTION AND THE ESTIMATED ROOT FOR EACH OF THE REPETITIONS. 

 iAf
 iA

 iteration 

0.7792 0.2 (m) 0 

0.2593 0.3198 (m) 1 

0.0375 0.4053 (m) 2 

0.00082 0.4220 (m) 3 

0.00038 0.4223 (m) 4 

 
As can be seen, after four iterations, this method converges 

and the root of equation (4) is calculated as 0.4223, and for this 
answer, the value of equation (4) decreases to about 0.00038. 
In this problem we arrive at the root of the equation at high 
speed and the advantages of the Newton-Raphson method are 
used to compute the parameter ‘A’ for the hyperbolic surface. 
After calculating ‘A’, the ‘C’ parameter for the hyperbolic 

surface can also be obtained according to the following 
equation and the stages of designing the parabolic, hyperbolic 
surfaces and feed antenna are completed. 

6335.04223.05.1/  eACACe                        (18) 

 

IV. CONCLUSION  

In this paper, the Newton-Raphson numerical method is 
used to solve the characteristic equation that determines the 
dimensions of the hyperbolic reflector and finds the root of this 
equation with high accuracy and high convergence rate. 
Initially, a description of finding the root of a nonlinear 
equation by the Newton-Raphson numerical method is 
presented. Then the characteristic equation of the antenna and 
its various variables, are presented and the initial design 
method of these variables is mentioned. In the following, a 
design example is investigated that further illustrates the 
method of calculating various variables in the characteristic 
equation and the method of calculating the root of the 
characteristic equation. 
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