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Abstract - In this paper we investigate a class of harmonic 
univalent functions obtaining its coefficient inequality, growth 
and distortion theorems and convolution properties. 
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I. INTRODUCTION 

A continuous complex valued function f u i v   defined 

in a simply connected domain D is said to be harmonic in D if 
both u and v are real harmonic in D. the harmonic function has 

a unique representation f h g  , i.e. there exists analytic 

functions H and G such that  

2 2 2 2

H H G G H G H G
f h g

   
     

  
   
   

 

where h  and g  are analytic and co analytic part of f  

respectively.The Jacobian of f h g  is given by 
2 2

( ) | ( ) | | ( ) |
f

J z h z g z   . The mapping ( )z f z is 

orientation preserving and locally 1-1 in D if and only if 

( ) 0fJ z  in D (see Lewy [6] and Clunie and Shiel small [2] ). 

Let h  denote the family of normalized functions f h g 

that are harmonic, orientation preserving and univalent in the 

open unit disk { :| | 1}z z   see [3, 7] where  
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Several researchers have defined and studied new 
subclasses of harmonic univalent functions see [1, 4, 5, 8]. In 
this paper we introduce a subclass of harmonic univalent 
functions and obtain the coefficient inequality, growth 
estimate, distortion theorem and convolution properties for the 
functions in this class. 

For 0 1  , we consider the subclass ( )HL   of 

harmonic univalent functions f h g  satisfying the 

condition 
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Further let ( )
H

L  denote the subclass of ( )HL  consisting 

of functions f h g  such that 
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II. MAIN RESULTS 

Theorem 1  Let f h g  be such that h  and g  are given by 

(1), then f  is harmonic univalent in  and ( )
H

f L  , if

2 2

1

2 1 2 1
| | | | 2

1 1
n n

n

n n
a b

 

 





    
  

  
             (4) 

Where 
1

1, 0 1a     

Proof f  is locally univalent and orientation preserving in , if 
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if ( ) 0f z  , then we show that 1 2( ) ( )f z f z  whenever

1 2z z .Since  is simply connected and convex we have, 

1 2( ) (1 )z t t z t z    , if 1 20 1, ,t z z   so that 1 2z z . 

1

1 2 2 1 2 1
0

( ) ( ) [( ) ( ( )) ( ) ( ( ))] .f z f z z z h z t z z g z t dt       

Dividing by 2 1 0z z  , and taking real part 
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which implies that 
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by (4) 
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using this in (5) shows that f  is univalent in  . 

To show that ( )
H

f L  , we need to show that if (4) holds, 

then 
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and ( ) ( ) ( )B z h z g z   

Letting
( )
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A z
w

B z
 , now it is enough to show that

1 1w w      , that is  
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Substituting A (z) and B (z) we obtain, 
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Theorem 2  Let f h g  be such that h and g are given by 

(3). Then ( )
H

f L  if and only if 
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where 
1

1a   and 0 1  . 

Proof  The ‘if ‘part follows from Theorem 1, for the only if 

part, we show that if ( )
H

f L  and condition (6) does not 

hold. The necessary and sufficient condition for f h g 

given by (3) to be in ( )
H

L  is that 
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The above condition must hold for all values of z,

1.z r  Choosing the value z on positive real axis, where 

0 1.z r   , and since Re( ) 1
i i

e e
 

     , the inequality 

reduces to 
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        (7) 

If the condition in the equation (6) does not hold then the 
numerator in (7) is negative for r sufficiently close to 1. This 

contradicts the condition for ( )
H

f L   

 

III. GROWTH AND DISTORTION THEOREMS 

The growth and distortion bounds for the functions in this 
class is discussed in the following theorems 

Theorem 3  If ( )
H

f L  , then  
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Proof Let ( )
H

f L  , taking absolute value for f            
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Theorem 4  If ( )
H

f L  , then 
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Theorem 5 ( )
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f L  if and only if 
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IV. CONVOLUTION 

Definition For 
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product of two harmonic functions f and F  is defined as  
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Theroem 6  For 0 1    , let ( )
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because ( )
H

f L  . Hence we have * ( )
H

f F L  . 

Theorem 7 The family ( )
H

L  is closed under convex 

combination. 
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f L   where if  is given by  
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