On Certain Subclass of Harmonic Univalent Functions

Thomas Rosy ${ }^{1}$, Vadivelan Urkalan ${ }^{2}$, S. Sunil Varma ${ }^{3}$
${ }^{1,3}$ Madras Christian College, Chennai - 600059
${ }^{2}$ Vel Tech Rangarajan Dr. Sagunthala R\&D Institute of Science and Technology, Chennai - 600062, Tamil Nadu, India
('thomas.rosy@gmail.com, ${ }^{2}$ vadivelanu @ gmail.com, ${ }^{3}$ sunu_79@yahoo.com)

Abstract

In this paper we investigate a class of harmonic univalent functions obtaining its coefficient inequality, growth and distortion theorems and convolution properties.

Keywords- Univalent Functions, Harmonic Functions

I. Introduction

A continuous complex valued function $f=u+i v$ defined in a simply connected domain D is said to be harmonic in D if both u and v are real harmonic in D . the harmonic function has a unique representation $f=h+\bar{g}$, i.e. there exists analytic functions H and G such that
$f=\frac{H+\bar{H}}{2}+\frac{G-\bar{G}}{2}=\left(\frac{H+G}{2}\right)+\left(\frac{\overline{H-G}}{2}\right)=h+\bar{g}$
where h and g are analytic and co analytic part of f respectively.The Jacobian of $f=h+\bar{g}$ is given by $J_{f}(z)=\left|h^{\prime}(z)\right|^{2}-\left|g^{\prime}(z)\right|^{2}$. The mapping $\quad z \rightarrow f(z)$ is orientation preserving and locally 1-1 in D if and only if $J_{f}(z)>0$ in D (see Lewy [6] and Clunie and Shiel small [2]). Let h denote the family of normalized functions $f=h+\bar{g}$ that are harmonic, orientation preserving and univalent in the open unit disk $\Delta=\{z:|z|<1\}$ see $[3,7]$ where
$h(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \quad g(z)=\sum_{n=1}^{\infty} b_{n} z^{n},\left|b_{1}\right|<1$
here
$z^{\prime}=\frac{\partial}{\partial \theta}\left(z=r e^{i \theta}\right), f^{\prime}(z)=\frac{\partial}{\partial \theta}(f(z))=\frac{\partial}{\partial \theta} f\left(r e^{i \theta}\right)$,
$0 \leq r<1, \theta \in \mathbb{R}$.
Several researchers have defined and studied new subclasses of harmonic univalent functions see $[1,4,5,8]$. In this paper we introduce a subclass of harmonic univalent functions and obtain the coefficient inequality, growth estimate, distortion theorem and convolution properties for the functions in this class.

For $0 \leq \beta<1$, we consider the subclass $L_{H}(\beta)$ of harmonic univalent functions $f=h+\bar{g}$ satisfying the condition

$$
\begin{equation*}
\operatorname{Re}\left\{\left(1+e^{i \alpha}\right)\left(\frac{z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}{f(z)}\right)-e^{i \alpha}\right\} \geq \beta \tag{2}
\end{equation*}
$$

Further let $L_{\bar{H}}(\beta)$ denote the subclass of $L_{H}(\beta)$ consisting of functions $f=h+\bar{g}$ such that
$h(z)=z-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n}, \quad g(z)=\sum_{n=1}^{\infty}\left|b_{n}\right| z^{n}$

II. MAIN RESULTS

Theorem 1 Let $f=h+\bar{g}$ be such that h and g are given by (1), then f is harmonic univalent in Δ and $f \in L_{\bar{H}}(\beta)$, if
$\sum_{n=1}^{\infty}\left[\frac{2 n^{2}-1-\beta}{1-\beta}\left|a_{n}\right|+\frac{2 n^{2}+1+\beta}{1-\beta}\left|b_{n}\right|\right] \leq 2$
Where $a_{1}=1,0 \leq \beta<1$
Proof f is locally univalent and orientation preserving in Δ, if $\left|h^{\prime}(z)\right|^{2}-\left|g^{\prime}(z)\right|^{2} \geq 0$
$\left|h^{\prime}(z)\right|=\left|1-\sum_{n=2}^{\infty} n\right| a_{n}\left|z^{n-1}\right| \quad \geq 1-\sum_{n=2}^{\infty} n\left|a_{n}\right| r^{n-1}>1-\sum_{n=2}^{\infty} n\left|a_{n}\right|$
$\geq \sum_{n=1}^{\infty} n\left|b_{n}\right|>\sum_{n=1}^{\infty} n\left|b_{n}\right| r^{n-1} \geq 1 g^{\prime}(z) \mid$.
if $f(z) \neq 0$, then we show that $f\left(z_{1}\right) \neq f\left(z_{2}\right)$ whenever $z_{1} \neq z_{2}$. Since Δ is simply connected and convex we have, $z(t)=(1-t) z_{1}+t z_{2} \in \Delta$, if $0 \leq t \leq 1, z_{1}, z_{2} \in \Delta$ so that $z_{1} \neq z_{2}$.
$f\left(z_{1}\right)-f\left(z_{2}\right)=\int_{0}^{1}\left[\left(z_{2}-z_{1}\right) h^{\prime}(z(t))+\overline{\left(z_{2}-z_{1}\right) g^{\prime}(z(t))}\right] d t$.
Dividing by $z_{2}-z_{1} \neq 0$, and taking real part
$\operatorname{Re} \frac{f\left(z_{2}\right)-f\left(z_{1}\right)}{z_{2}-z_{1}}=\int_{0}^{1} \operatorname{Re}\left[h^{\prime}(z(t))+\frac{\overline{\left(z_{2}-z_{1}\right)}}{z_{2}-z_{1}} g^{\prime}(z(t))\right] d t$
$\geq \int_{0}^{1} \operatorname{Re}\left[h^{\prime}(z(t))-\left|g^{\prime}(z(t))\right|\right] d t$
which implies that
$\operatorname{Re} h^{\prime}(z(t))-\left|g^{\prime}(z(t))\right| \geq \operatorname{Re} h^{\prime}(z)-\sum_{n=1}^{\infty} n\left|b_{n}\right|$
by (4)
$\geq 1-\sum_{n=2}^{\infty} \frac{2 n^{2}-1-\beta}{1-\beta}\left|a_{n}\right|-\sum_{n=1}^{\infty} \frac{2 n^{2}+1+\beta}{1-\beta}\left|b_{n}\right| \geq 0$
using this in (5) shows that f is univalent in Δ.
To show that $f \in L_{\bar{H}}(\beta)$, we need to show that if (4) holds, then
$\operatorname{Re}\left\{\frac{\left(1+e^{i \alpha}\right)\left(z^{2} h^{\prime \prime}(z)-\overline{z^{2} g^{\prime \prime}(z)}+z h^{\prime}(z)-\overline{z g^{\prime}(z)}\right)-e^{i \alpha}(h(z)+\overline{g(z)})}{h(z)+\overline{g(z)}}\right\}=\operatorname{Re} \frac{A(z)}{B(z)} \geq \beta$
where $\quad z=r e^{i \theta}, 0 \leq \theta \leq 2 \phi, 0 \leq r<1,0 \leq \beta<1 \quad$ and
$A(z)=\left(1+e^{i \alpha}\right)\left(z^{2} h^{\prime \prime}(z)-\overline{z^{2} g^{\prime \prime}(z)}+z h^{\prime}(z)-\overline{z g^{\prime}(z)}\right)-e^{i \alpha}(h(z)+\overline{g(z)})$ and $B(z)=h(z)+\overline{g(z)}$

Letting $w=\frac{A(z)}{B(z)}$, now it is enough to show that $|1-\beta+w| \geq|1+\beta-w|$, that is
$|A(z)+(1-\beta) B(z)|-|A(z)-(1+\beta) B(z)| \geq 0$
Substituting A (z) and B (z) we obtain,
$=\left|\left(1+e^{i \alpha}\right)\left(z^{2} h^{\prime \prime}(z)-\overline{z^{2} g^{\prime \prime}(z)}+z h^{\prime}(z)-\overline{z g^{\prime}(z)}\right)-e^{i \alpha}(h(z)+\overline{g(z)})+(1-\beta)(h(z)+\overline{g(z)})\right|$
$-\left|\left(1+e^{i \alpha}\right)\left(z^{2} h^{\prime \prime}(z)-\overline{z^{2} g^{\prime \prime}(z)}+z h^{\prime}(z)-\overline{z g^{\prime}(z)}\right)-e^{i \alpha}(h(z)+\overline{g(z)})-(1+\beta)(h(z)+\overline{g(z)})\right|$
$\geq(2-\beta)|z|-\sum_{n=2}^{\infty}\left(2 n^{2}-1-\beta\right)\left|a_{n}\right|\left|z^{n}\right|-\sum_{n=1}^{\infty}\left(2 n^{2}+1+\beta\right)\left|b_{n}\right|\left|z^{n}\right|$
$\geq(2-\beta)|z|-\left\{1-\sum_{n=2}^{\infty} \frac{2 n^{2}-1-\beta}{1-\beta}\left|a_{n}\right|-\sum_{n=1}^{\infty} \frac{2 n^{2}+1+\beta}{1-\beta}\left|b_{n}\right|\right\} \geq 0 \quad$ by (4).
Theorem 2 Let $f=h+\bar{g}$ be such that h and g are given by
(3). Then $f \in L_{\bar{H}}(\beta)$ if and only if
$\sum_{n=1}^{\infty}\left[\frac{2 n^{2}-1-\beta}{1-\beta}\left|a_{n}\right|+\frac{2 n^{2}+1+\beta}{1-\beta}\left|b_{n}\right|\right] \leq 2$
where $a_{1}=1$ and $0 \leq \beta<1$.
Proof The 'if 'part follows from Theorem 1, for the only if part, we show that if $f \notin L_{\bar{H}}(\beta)$ and condition (6) does not hold. The necessary and sufficient condition for $f=h+\bar{g}$ given by (3) to be in $L_{\bar{H}}(\beta)$ is that

$$
\begin{aligned}
& \operatorname{Re}\left\{\left(1+e^{i \alpha}\right)\left(\frac{z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}{f(z)}\right)-e^{i \alpha}\right\} \geq \beta \\
& \Rightarrow \operatorname{Re}\left\{\frac{\left(1+e^{i \alpha}\right)\left(z^{2} h^{\prime \prime}(z)-\overline{z^{2} g^{\prime \prime}(z)}+z h^{\prime}(z)-\overline{z g^{\prime}(z)}\right)-e^{i \alpha}(h(z)+\overline{g(z)})}{h(z)+\overline{g(z)}}\right\} \geq \beta
\end{aligned}
$$

which implies

The above condition must hold for all values of z , $|z|=r<1$. Choosing the value z on positive real axis, where $0 \leq z=r<1$., and since $\operatorname{Re}\left(-e^{i \alpha}\right) \geq-\left|e^{i \alpha}\right|=-1$, the inequality reduces to

$$
\begin{equation*}
\frac{1-\beta-\sum_{n=2}^{\infty}\left[2 n^{2}-\beta-1\right]\left|a_{n}\right| r^{n-1}-\sum_{n=1}^{\infty}\left[2 n^{2}+\beta+1\right]\left|b_{n}\right| r^{n-1}}{1-\sum_{n=2}^{\infty}\left|a_{n}\right| r^{n-1}+\sum_{n=1}^{\infty}\left|b_{n}\right| r^{n-1}} \geq 0 \tag{7}
\end{equation*}
$$

If the condition in the equation (6) does not hold then the numerator in (7) is negative for r sufficiently close to 1 . This contradicts the condition for $f \in L_{\bar{H}}(\beta)$

III. GROWTH AND DISTORTION THEOREMS

The growth and distortion bounds for the functions in this class is discussed in the following theorems
Theorem 3 If $f \in L_{\bar{H}}(\beta)$, then
$|f(z)| \leq\left(1+\left|b_{1}\right|\right) r+\left[\frac{1-\beta}{7-\beta}-\frac{3+\beta}{7-\beta}\left|b_{1}\right|\right] r^{2},|z|=r<1$
and
$|f(z)| \geq\left(1-\left|b_{1}\right|\right) r-\left[\frac{1-\beta}{7-\beta}-\frac{3+\beta}{7-\beta}\left|b_{1}\right|\right] r^{2},|z|=r<1$
Proof Let $f \in L_{\bar{H}}(\beta)$, taking absolute value for f $|f(z)| \leq\left(1+\left|b_{1}\right|\right) r+\sum_{n=2}^{\infty}\left[\left|a_{n}\right|+\left|b_{n}\right|\right] r^{n}$
$\leq\left(1+\left|b_{1}\right|\right) r+\frac{1-\beta}{7-\beta}\left[1-\frac{3+\beta}{1-\beta}\left|b_{1}\right|\right] r^{2}$
$=\left(1+\left|b_{1}\right|\right) r+\left[\frac{1-\beta}{7-\beta}-\frac{3+\beta}{7-\beta}\left|b_{1}\right|\right] r^{2}$.
and
$|f(z)| \geq\left(1-\left|b_{1}\right|\right) r-\sum_{n=2}^{\infty}\left[\left|a_{n}\right|+\left|b_{n}\right|\right] r^{n}$
$\geq\left(1-\left|b_{1}\right|\right) r-\frac{1-\beta}{7-\beta}\left[1-\frac{3+\beta}{1-\beta}\left|b_{1}\right|\right] r^{2}$
$=\left(1-\left|b_{1}\right|\right) r-\left[\frac{1-\beta}{7-\beta}-\frac{3+\beta}{7-\beta}\left|b_{1}\right|\right] r^{2}$.
Theorem 4 If $f \in L_{\bar{H}}(\beta)$, then
$\left|f^{\prime}(z)\right| \leq\left(1+\left|b_{1}\right|\right)+\left[\frac{1-\beta}{7-\beta}-\frac{3+\beta}{7-\beta}\left|b_{1}\right|\right] r$
and
$\left|f^{\prime}(z)\right| \geq\left(1-\left|b_{1}\right|\right)-\left[\frac{1-\beta}{7-\beta}-\frac{3+\beta}{7-\beta}\left|b_{1}\right|\right] r,|z|=r<1$.
Proof Let $f \in L_{\bar{H}}(\beta)$, taking absolute value for f^{\prime} $\left|f^{\prime}(z)\right| \leq\left(1+\left|b_{1}\right|\right)+\sum_{n=2}^{\infty}\left[n\left|a_{n}\right|+n\left|b_{n}\right|\right] r^{n-1}$
$\leq\left(1+\left|b_{1}\right|\right)+\frac{1-\beta}{7-\beta}\left[1-\frac{3+\beta}{1-\beta}\left|b_{1}\right|\right] r$
$=\left(1+\left|b_{1}\right|\right)+\left[\frac{1-\beta}{7-\beta}-\frac{3+\beta}{7-\beta}\left|b_{1}\right|\right] r$.
and

$$
\begin{aligned}
& \left|f^{\prime}(z)\right| \geq\left(1-\left|b_{1}\right|\right)-\sum_{n=2}^{\infty}\left[n\left|a_{n}\right|+n\left|b_{n}\right|\right] r^{n-1} \\
& \geq\left(1-\left|b_{1}\right|\right)-\frac{1-\beta}{7-\beta}\left[1-\frac{3+\beta}{1-\beta}\left|b_{1}\right|\right] r \\
& = \\
& \left(1-\left|b_{1}\right|\right)-\left[\frac{1-\beta}{7-\beta}-\frac{3+\beta}{7-\beta}\left|b_{1}\right|\right] r .
\end{aligned}
$$

Theorem $5 f \in L_{\bar{H}}(\beta)$ if and only if
$f(z)=\sum_{n=1}^{\infty}\left(X_{n} h_{n}+Y_{n} g_{n}\right)$
where
$h_{1}(z)=z, h_{n}(z)=z-\frac{1-\beta}{2 n^{2}-1-\beta} z^{n},(n=2,3 \ldots)$,
$g_{n}(z)=z+\frac{1-\beta}{2 n^{2}+1+\beta} \bar{z}^{n},(n=1,2,3 \ldots)$
$\sum_{n=1}^{\infty}\left(X_{n}+Y_{n}\right)=1, X_{n} \geq 0$ and $Y_{n} \geq 0$

Proof

$f(z)=\sum_{n=1}^{\infty}\left(X_{n} h_{n}+Y_{n} g_{n}\right)=\sum_{n=1}^{\infty} X_{n} h_{n}+\sum_{n=1}^{\infty} Y_{n} g_{n}$
$=z-\sum_{n=2}^{\infty} \frac{1-\beta}{2 n^{2}-1-\beta} X_{n} z^{n}+\sum_{n=1}^{\infty} \frac{1-\beta}{2 n^{2}+1+\beta} Y_{n} \bar{z}^{n}$
then
$\sum_{n=2}^{\infty}\left[\frac{2 n^{2}-1-\beta}{1-\beta}\right]\left[\frac{1-\beta}{2 n^{2}-1-\beta}\right] X_{n}+\sum_{n=1}^{\infty}\left[\frac{2 n^{2}+1+\beta}{1-\beta}\right]\left[\frac{1-\beta}{2 n^{2}+1+\beta}\right] Y_{n}$
$=1-X_{1} \leq 1$, and hence $f \in L_{\bar{H}}(\beta)$
Conversely,
$f \in L_{\bar{H}}(\beta) \quad$,set $\quad X_{n}=\frac{2 n^{2}-1-\beta}{1-\beta}\left|a_{n}\right|,(n=1,2 \ldots) \quad$ and $Y_{n}=\frac{2 n^{2}+1+\beta}{1-\beta}\left|b_{n}\right|,(n=1,2 \ldots) \quad$ then $\quad \sum_{n=1}^{\infty}\left(X_{n}+Y_{n}\right) \leq 1 \quad$ by Theorem $2,0 \leq X_{n} \leq 1,(n=1,2 \ldots)$ and $0 \leq Y_{n} \leq 1,(n=1,2 \ldots)$ consequently we have $f(z)=\sum_{n=1}^{\infty}\left(X_{n} h_{n}+Y_{n} g_{n}\right)$.

IV. CONVOLUTION

Definition For $f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}+\sum_{n=1}^{\infty} b_{n} \bar{z}^{n} \quad$ and $F(z)=z-\sum_{n=2}^{\infty} A_{n} z^{n}+\sum_{n=1}^{\infty} B_{n} \bar{z}^{n}$ the modified Hadamard product of two harmonic functions f and F is defined as
$(f * F)=f(z) * F(z)=z-\sum_{n=2}^{\infty} a_{n} A_{n} z^{n}+\sum_{n=1}^{\infty} b_{n} B_{n} \bar{z}^{n}$
Theroem 6 For $0 \leq \gamma \leq \beta<1$, let $f \in L_{\bar{H}}(\gamma)$ and $F \in L_{\bar{H}}(\beta)$, then $f * F \in L_{\bar{H}}(\gamma) \subset L_{\bar{H}}(\beta)$.

Proof Let $f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}+\sum_{n=1}^{\infty} b_{n} \bar{z}^{n}$ be in $L_{\bar{H}}(\gamma)$ and $F(z)=z-\sum_{n=2}^{\infty} A_{n} z^{n}+\sum_{n=1}^{\infty} B_{n} \bar{z}^{n} \quad$ be in $\quad L_{\bar{H}}(\beta)$, the coefficients of $f^{*} F$ is given by
$\sum_{n=1}^{\infty}\left[\frac{2 n^{2}-1-\beta}{1-\beta}\left|a_{n} A_{n}\right|+\frac{2 n^{2}+1+\beta}{1-\beta}\left|b_{n} B_{n}\right|\right]$
$\leq \sum_{n=1}^{\infty}\left[\frac{2 n^{2}-1-\beta}{1-\beta}\left|a_{n}\right|+\frac{2 n^{2}+1+\beta}{1-\beta}\left|b_{n}\right|\right]$.
because $f \in L_{\bar{H}}(\gamma)$. Hence we have $f * F \in L_{\bar{H}}(\beta)$.
Theorem 7 The family $L_{\bar{H}}(\beta)$ is closed under convex combination.

Proof For $\mathrm{i}=1,2 \ldots$ let $f_{i} \in L_{\bar{H}}(\beta)$ where f_{i} is given by
$f_{i}(z)=z-\sum_{n=2}^{\infty}\left|a_{i n}\right| z^{n}+\sum_{n=1}^{\infty}\left|b_{\text {in }}\right| z^{n}$.
for $0 \leq t_{i} \leq 1, \sum_{n=1}^{\infty} t_{i}=1$, the convex combination of f_{i} is
$\sum_{i=1}^{\infty} t_{i} f_{i}(z)=z-\sum_{n=2}^{\infty}\left(\sum_{i=2}^{\infty} t_{i}\left|a_{i n}\right| z^{n}\right)+\sum_{n=1}^{\infty}\left(\sum_{i=1}^{\infty} t_{i}\left|b_{i n}\right| \bar{z}^{n}\right)$
$=\sum_{i=1}^{\infty} t_{i}\left\{\sum_{n=1}^{\infty}\left[\frac{2 n^{2}-1-\beta}{1-\beta}\left|a_{i n}\right|+\frac{2 n^{2}+1+\beta}{1-\beta}\left|b_{i n}\right|\right]\right\}$
$\leq 2 \sum_{i=1}^{\infty} t_{i}=2$

REFERENCES

[1] Om P. Ahuja and Jay M.Jahangiri, Certain Meromorphic Harmonic Functions,Bull. Malaysian. Math. Sc.Soc.(second series)25 (2002), 1-10.
[2] J.Clunie and T Shiel Small,Harmonic Univalent Functions,Ann.Acad.Aci.Fenn.Ser.A.I.Math.,9 (1984),3-25.
[3] A.W. Goodman, On Uniformly Convex Functions, Annal.Polonici Math., 56 (19991), 86-92.
[4] J.M.Jahangiri, Harmonic Functions Starlike in the unit Disk,J. Math. Anal. Appl., 235 (1999),470-477.
[5] J.M.Jahangiri and Silverman, Meromorphic Univalent Harmonic Functions with Negative Coe_cients, Bull. Kor. Math.Soc.36(4) (1999),763-770.
[6] H.Lewy, On the non - vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc., 42(1936), 689-110.
[7] Peter Duren, Harmonic Mappings in The Plane, Cambridge University Press, 2004.
[8] Thomas Rosy, B Adolf Stephen and K G Subramanian, Good-man Rooning Type Harmonic Univalent Functions, Kyungpook Math. J, 41(2001), 45-54.

