

95

International Journal of

Science and Engineering Investigations vol. 7, issue 74, March 2018

ISSN: 2251-8843

Recognition Speed Increase Using Multithreading

R. A. Simonyan
IIAP NAS RA

(simonyan.r2@gmail.com)

Abstract- The quick recognition of the objects is very
important, as in many cases the quick acquisition of the
information on the objects has great importance [1]. In this
article we are going to speak about the recognition of the object
(according to the template matching based object recognition)
and about the mechanisms for increasing the speed of the
process.

Keywords- Object Recognition, Video Surveillance, Recognition

Speed Increase, Multithreading, Sub Threads Development,

Producer-Consumer Problem

I. INTRODUCTION

The quick recognition of objects is also important in the
following cases:

1- Not to keep the user waiting to see the recognized object.

2- In fast changing environment the mechanism should
manage to recognize all the objects in the sight without
leaving out any object.

In some cases it can have a vital role [1, 2]. For instance,
due to the quick recognition systems security workers can
detect the terrorist/criminal on time and take preventing
measures to save human lives.

In this particular case to ensure quick recognition

multithreading has been implemented [3][4]։ An optimal
algorithm has been developed to increase the speed of big/array
object recognition to its maximum.

Multithreading is the simultaneous transaction of Central
Processor Unit or of one core consisting of multilateral
processes which are appropriately supported by the operational
systems. Multithreading aims at expanding the usage of one
core using the paralleling of thread-level as well as of
instruction-level. If one thread gets many cache omissions, then
the other threads can continue using the unused resources
which can lead to a faster general implementation, as those
resources would be “free” if only one thread was being used.
Besides, if one part cannot use all the calculating resources of
CPU (as the orders depend on the results being produced by
each of them), through this thread the inactivity of the other
resources can be prevented.

II. METHOD DESCRIPTION

During video surveillance the camera captures an image at
24 frames/cadres in a second frequency, whereas the object
detection algorithm has a certain pace. If while surveillance we
take each cadre and if we apply the recognition algorithm, then
in one second for each of 24 shots we will have 1 second for
the execution of the algorithm, that is to say one real second
will last 24 seconds. Thus, implementing the object
recognizing/detection algorithm we will fall behind the time,
which is not appropriate for video surveillance where it is
necessary the immediate detection of objects.

During the surveillance the video acts like a stream, which
works in a real time. To tackle the aforementioned issues
multi-thread algorithms are being used.

We are going to discuss one of the famous methods of
object detection for surveillance through multi-thread means,
afterwards we will discuss the offered method and its
advantages.

The algorithm working through multi-thread means first of
all establishes a link with the camera and gets the information
from the camera, in the format appropriate for the future
development. Then the algorithm is designed to have two
threads, which the computer will run simultaneously (fig. 1.)
[3][4]. A buffering array will be created where each of the
cadres taken during the surveillance will be stored for the
further development. Through the first thread the algorithm
code reads the information got from the camera, that is to say
all the cadres according to the sequence and are stored in the
aforementioned buffering array. This process continues till the
camera is in a working mode. Consequently, every second the
algorithm developed in the first thread saves 24 cadres/shots in
the buffering array. Thus, the last element of the array
corresponds to the last cadre of the camera at any time. Having
the last cadre, we will have the information available on the
events happening at the present moment.

Through the second thread the object detection algorithm

will be implemented [1][2], the latter will turn to the buffering
array and will take the cadre for development. As the first and
the second threads start the process simultaneously, it is
possible that the second thread starts its work faster than the
first manages to save the first cadre got from the camera.

International Journal of Science and Engineering Investigations, Volume 7, Issue 74, March 2018 96

www.IJSEI.com Paper ID: 77418-16 ISSN: 2251-8843

This will lead to a problem for the system. That is the
reason that the second thread turns to the buffering array and

checks the presence of the cadre. Object detection block of

the second thread will start working as soon as when the first
thread saves the first cadre in the buffering array.

Thus, by taking the cadre from the array the detection

block will return to the system the detected objects, then,
finishing the job, it will turn to the buffering array again, and
will take the cadre saved the last and will execute the

detection process again. This process will be executed in an

infinite circle till the camera is in the working mode.

This model of multi-threading is called Producer-consumer
problem. The software part, that is to say the algorithm, has
been developed to carry out trials on the latter and to do time
calculations. Figure 1 depicts the block-scheme of the
algorithm.

It is worth mentioning that in this model the pace of the
first thread should be faster than the one of the second thread,
so that the system operates optimally. Otherwise, by saving the
cadres very slowly in the buffering array the first thread will
leave the second thread inactive, that is to say in a standby
mode, as the second thread, by taking the cadre from the array,
detects objects faster by emptying the array. To avoid the
above mentioned non-optimal work usually some functions are
implemented to provide small time delay (for instance 100m/s)
for algorithms. In this case it will be used for the second thread
immediately after the detection code.

Producer-consumer model will not lead to the
aforementioned problem during surveillance for object
detection and recognition, as the time span for detection and
recognition (the detection time span is noted as t2) is always
bigger than getting the cadre from the camera and saving in the
buffering array (noted as t1). In contrast to this the detection
time span is much bigger that of saving the cadre in the array
(formula 1).

t2 << t1 (1)

Thus, the first thread fills the buffering array very quickly,
and the second thread manages to take only a small quantity of
cadre of buffering array. More concrete trials have shown that
the second thread uses 5-25% of existing cadres of the
buffering array, which means that the first thread is 4-20 times
faster than the second one. The slow pace of the second thread
limits the usage of the majority of cadres of the first thread.
This will cause a problem for the user, for instance, in case if
the pace of the second thread is 20 times slower than the first
one the system will be able to recognize the video in every 20
cadres, which approximately equals to 1 second per cadre
frequency. In this particular case an object can happen to be
found in that intermittent unobserved place and stay
undetected.

To solve this issue a method has been developed which will
enhance the frequency of the taking and developing process of
cadres, which, in its turn, will lead to the detection of greater
number of objects.

Figure 1. Producer-consumer model block –scheme in case of object detection during video surveillance

International Journal of Science and Engineering Investigations, Volume 7, Issue 74, March 2018 97

www.IJSEI.com Paper ID: 77418-16 ISSN: 2251-8843

III. MODIFIED (OPTIMIZED) METHOD’S DESCRIPTION

Thus, for solving the problem of object detection and
recognition during the surveillance a more optimal algorithm of
multi-threading has been developed based on the method of
Producer-consumer model.

In the case of the aforementioned Producer-consumer
model the quantity of the producer (thread 1) and consumer
(thread 2) is the same. In the case of the new method the
second thread will be divided into more than one thread, as a
result we will have one producer and several consumers.

This method presupposes that the parallel running of
consumers will lead to the increase of the frequency of
detection in the video.

To identify the utmost number of possible consumers a
code has been developed which turns to and gets the quantity
of free threads in the computer. The quantity is decided so that
threads, working in parallel, run as simultaneously as possible,
otherwise the great quantity of parallel threads will bring to the
overloading of the computer core and the software code will
work much slower than without multi-threading, that is to say
in sequence.

The algorithmic presentation of the second thread is set in a
separate function, which can be “called” by the threads
working in parallel. Multi-threading will be organized so that
the second thread will run the sub threads-the consumers.

Thus, every sub thread-every consumer will run the
algorithmic code of object detection, consequently, by taking
the last cadre from the buffering array. The threads work in
parallel but not ideally in the same time span, that is to say
there can be a small, millisecond difference in the time span of
the threads. This asynchrony can lead to a problem. To
understand the problem let us consider the following example.
At a certain moment of the system working there are 7 cadres
in the buffering array, in case the first thread is the producer,
and the sub threads I, II, III of the second thread are the
consumers (fig. 2). II sub thread, by starting its work a little
faster than the first one, will take 7 cadres from the array,
whereas the I sub thread, by starting faster than the III will take
the penultimate 6 cadres. Afterwards, sub thread II, after
implementing detection (highlighting the objects detected in
the cadre), will display cadre 7 in the final video, I sub thread-
6

th
 cadre, and III-5

th
 one. We will have the following sequence

of the cadres-7, 6, 5, whereas we need to have sequence of
5,6,7. The sequence will be broken and the user will see on the
screen a video consisting of mixed sequence of cadres.

Figure 2. Modified Producer-consumer model block scheme organized through sub threads

International Journal of Science and Engineering Investigations, Volume 7, Issue 74, March 2018 98

www.IJSEI.com Paper ID: 77418-16 ISSN: 2251-8843

To escape this problem first of all we will change the
program/software block, which is responsible for taking cadres
from the buffering array while detection. The aforementioned
software/program block along with the cadre will transfer the
index of the cadre from the buffering array, at the same time
not removing the cadre from the array. The index shows the
position of the cadre in the array, for instance the index for
cadre 27 is 27. This index will allow saving each cadre in a
chronological order after the consumers’ activities.

During multiple threading one of the sub threads will finish
the work the first-that is to say the object detection.
Afterwards the sub thread will save the cadre and the index as a
tuple variable and will wait for the end of the work of the other
sub threads. The other sub threads will work in the same way,
waiting for the end of the work of the other sub threads. This
can be organized through the following checking system, by
comparing the number of elements of array with previously
known number of sub threads.

This way we will force all the sub threads work at the same
pace, consequently the working time will be equal to the most
slowly pace of the sub thread.

Every sub thread, by turning to the buffering array, locks it
so that the other sub threads do not use that element.

In the new array the elements are spread randomly. We will
use sort algorithm according to the indexes, as a result of which

the cadres are arranged in the accurate chronological order in
the array. This being so, the sequence will not be broken and
the user will see a wide of accurately sequenced order of
cadres. The new array is zeroed preparing a ground for the next
cycle rotation.

As we know the first phase in the process of object
recognition is the detection of objects, and due to the described
detection method we win time which will contribute to the
quickening of the pace of general recognition.

We have spoken about the quickening of the pace of the
detection process, we have also discussed the method
for quickening the recognition method. It is evident that in the
image there can be more than one object. On the whole the
recognition algorithms are organized so that after the detection
the objects are identified and for each object separately
recognition algorithm is implemented one after another. The
recognition algorithms are responsible for the detection of only
one object at a time. That is to say, it recognizes the first one,
after finishing it turns to the second and so on.

To quicken this process we will organize the sub threads so
that each of them divides into small sub threads, when each of
them will implement the recognition code in its turn. Each time
small sub threads will be generated by the number of objects,
consequently each of them will be responsible for the detection
of one object (fig. 3).

Figure 3. Recognition block and small sub threads

By organizing the recognition process in parallel we spend
approximately as much time as it would be needed for the
recognition of one object. Right after the detection the sub
thread will be divided into smaller sub threads, that is to say,
after the detection block, which will be followed by the

algorithm responsible for the saving of newly created image
and the saving of the index, which in its turn will be followed
by the appropriate activities and after this all the cycle will be
repeated (fig 4).

International Journal of Science and Engineering Investigations, Volume 7, Issue 74, March 2018 99

www.IJSEI.com Paper ID: 77418-16 ISSN: 2251-8843

Figure 4. The block scheme of integral algorithm of detection and recognition

Due to the developed method the pace of objects

recognition in video (detection and recognition) quickens
substantially.

IV. CONCLUSION

Thus, to quicken the pace of object recognition process
speed in videos an algorithm has been developed working
through multi-threading.

To develop the algorithm Producer-consumer model has
been investigated, including its advantages and disadvantages.
To increase the algorithm speed the producer-consumer model
has been modified.

In the first phase, an algorithm has been developed to
increase the pace of object detection algorithm, which includes
organizing the activities of sub threads, cycle and new array,
and in the second phase the quickening of recognition
processes has been ensured.

Trials/experiments have been carried out, the results of
which have shown that the pace of the modified method is
substantially quicker than that of the previous one, etc.

One of the advantages of the method is that it does not keep
the user waiting for them to see the recognized objects on the
screen. In fast changing environment the system manages to
recognize all the objects in the view without leaving out any
object.

REFERENCES

[1] R. A. Simonyan, D. A. Simonyan, “Detection and ignorance method of
false targets during object detection”, In Computer Science and
Information Technologies (CSIT) Conference 2017, pp. 372-375.

[2] R. A. Simonyan, “Hidden and Unknown Object Detection in Video”, In
International Journal of New Technology and Research (IJNTR)
Volume 2, Issue 11, Nov. 2016, pp. 22-25.

[3] N. Saaidon, W. Sediono, "Multicolour object detection using
multithreading", In IEEE Symposium on Computer Applications &
Industrial Electronics (ISCAIE), 2015, pp. 48 - 52.

[4] S. K. Mahapatra, S. K. Mohapatra, S. Mahapatra, S. K. Tripathy, "A
Proposed Multithreading Fuzzy C-Mean Algorithm for Detecting
Underwater Fishes", 2016 2nd International Conference
on Computational Intelligence and Networks (CINE), 2016, pp. 102 -
105

[5] L. Fan, A. C. Loui, “A Graph-Based Framework for Video Object
Segmentation and Extraction in Feature Space”, In IEEE International
Symposium on Multimedia (ISM), 2015, pp. 266-271

[6] Basel A. Mahafzah, "Parallel multithreaded IDA* heuristic search:
algorithm design and performance evaluation", In International Journal
of Parallel, Emergent and Distributed Systems, Dec 2010, pp. 61-82

[7] Khaled El-Fakih, Gerassimos Barlas, Mustafa Ali, Nina Yevtushenko,
"Parallel algorithms for reducing derivation time of distinguishing
experiments for nondeterministic finite state machines", In International
Journal of Parallel, Emergent and Distributed Systems, Mar 2017, pp.
197-210

[8] E. S. Fraga, "Symmetric multiprocessing algorithm for conceptual
process design", In Computer Aided Chemical Engineering, Volume 8,
2000, pp. 637-642

[9] P. O. Frederickson, R. E. Jones, B. T. Smith, "Synchronization and
control of parallel algorithms", In Parallel Computing, Volume 2, Issue
3, Nov 1985, pp. 255-264.

	I. Introduction
	II. Method description
	III. Modified (optimized) method’s description
	IV. Conclusion
	References

