
 

 
13 

International Journal of 

Science and Engineering Investigations                                 vol. 7, issue 76, May 2018 

ISSN: 2251-8843 

Applying the Particle Swarm Optimization Algorithm to Find the 

Dynamic Time Intervals in Controlling the Service Level 

Agreements in Cloud Computing 

Fatemeh Saadatjoo
1
, Mohammad Javad Rezaei

2
, Marziyeh Rahmani

3
 

1,2,3
Department of Computer Engineering, Sciense and Art University, Yazd, Iran

 

(1saadatjou@sau.ac.ir, 2Mj.rezaei@stu.sau.ac.ir, 3Rahmani69yazdstudent@gmail.com) 

 

 

 
Abstract-Cloud computing is a technology which provides its 
services based on demand and reduction of costs. Service level 
agreement is an agreement between cloud service providers 
and cloud users. When the contents of this agreement are not 
observed, it is violated, and the service provider should pay a 
fine. To examine the service level agreement, this paper 
proposes a method whose goal is to find time intervals in 
which the greatest violation of the agreement is detected. This 
detection does not increase the time overhead imposed on the 
service provider. In order to detect the violation, the Particle 
Swarm Optimization algorithm and the Genetic algorithm were 
compared to find the time interval with a higher number of 
detected violations and a minimal time overhead. The findings 
indicated that, as compared to two algorithms could establish a 
better balance between the time overhead and the number of 
violations. 

Keywords-Particle Swarm Optimization Algorithm, Cloud 

Computing,  Service Level Agreements, Gentic Algorithm 

 

I. INTRODUCTION  

The main concepts of cloud computing were formed in the 
1960s, when John McCarthy pointed out that cloud computing 
may be organized one day as one of the public industries [1]. 
Cloud computing is a new model in which computing 
resources, ranging from storing the data to completing the 
configuration of systems distributed based on demand, are 
available as scalable services on the Internet. In the case of the 
presence of parallelization in the software, users will be able to 
use the cloud computing solution to decrease the computational 
time. From the infrastructure point of view, it includes a set of 
distributed and parallel systems which are interconnected [2, 3, 
4]. Cloud systems provide the conditions for users to 
implement their computing requirements on cloud servers, 
rather than buying several servers, and pay only for their own 
use. Also, in these conditions, when the users face an increase 
in costs, they can use more resources based on their needs. This 
technology is known as virtualization, through which the 
dynamic sharing of the hardware resources is provided [5]. 
Buyya et al. of the University of Melbourne have defined cloud 

as follows: Cloud is a parallel distributed computing system 
consisting of a set of virtual and interconnected computers, and, 
as one or more integrated computing resources, agreements are 
achieved based on the agreements related to level of service 
presentation; these agreements are established after negotiation 
between the service provider and the customer [6]. The most 
comprehensive or most suitable definition for cloud computing 
might be the one proposed by the National Institute of 
Technology and Standards (NIST).  It has been defined in this 
way: Cloud computing is a model providing the conditions for 
easy access, based on the user’s demand, to a set of changeable 
computing resources and configurations through a network. 
This system can be provided quickly without a need for 
resource management or direct service interference of the 
provider [7]. In cloud computing, a workload is a set of text 
files including the samples of percentages for using the 
processor in each interval as well as the data collected from 
more than 500 data centers throughout the world. Also, there 
are two types of time interval including static interval and 
dynamic interval. Static intervals are those whose values are 
fixed during the program implementation, but dynamic 
intervals are those whose values vary during the program 
implementation [8]. Researchers often cannot work in a real 
cloud environment due to some cloud computing system 
bottlenecks.  So, simulation to model the mechanism and to 
evaluate the findings is essential [9]. The computing function 
has been based on the service level agreement model. This 
model includes information such as the characteristics of 
service and its name and values [10]. In the case of loss of data, 
agreement can help the users prove their claims against the 
cloud server. Agreement parameters include input and output 
bandwidths, processor, and memory [11-12-13]. Using the 
PSO algorithm, the best dynamic interval has been proposed as 
the output in this paper. The best dynamic interval is the one in 
which there is a balance between the violation of the service 
level agreement and the system time overhead. 

This paper is organized in the following manners. The 
second section reviews the studies related to the subject along 
with their advantages and disadvantages. Section 3 describes 
the proposed algorithm. Section 4 examines and evaluates the 
findings of the research. Finally, section 5 concludes the paper. 



International Journal of Science and Engineering Investigations, Volume 7, Issue 76, May 2018 14 

www.IJSEI.com            Paper ID: 77618-02 ISSN: 2251-8843 

II. REVIEW OF LITERATURE 

Several methods have been used to control and monitor 
service level agreements in cloud environments. These 
methods, each with both advantages and disadvantages, are 
divided into two general classes. The first class includes 
methods whose values do not change during program 
computations. They are known as static methods. The second-
class methods, whose values change during the program 
implementation, are known as dynamic methods. An 
automated monitoring process system, referred to as Sandpiper, 
has been presented in a static environment. The advantages of 
this system are considered to be automated monitoring, 
detection of important points, resetting the virtual machine 
when required, and prevention of service level agreement 
violations. However, lack of mapping the low-level metrics 
such as processor and memory to the parameters of the service 
level agreement is considered as the disadvantage of the system 
[14]. Reference [15] presents the Grid eye, which is a service-
oriented monitoring system with a flexible architecture. 
Managing the resources with a specific approach in a grid 
environment is considered as the advantage of that study, while 
its disadvantage is the lack of mapping the low-level criteria 
and management of the service level agreement in static and 
dynamic environments. The study in reference [16] presents 
Netlogger, which is a distributed monitoring system and can 
collect information from a network and monitor it. Netlogger is 
a user programming interface to investigate the load before and 
after some requests or operations. Monitoring the network 
resources is the advantage of that study, but it is 
disadvantageous due to failing to manage service level 
agreements. In [17], to manage service level agreements, a 
framework is added to the grid  discussed. This approach to 
service level agreements is applied to the grid network, when 
the goal is managing the agreement in the cloud environment. 
In [18], cloud monitoring of the program is presented by using 
the mOSAIC method. Development of monitoring techniques 
for such applications is described by using mOSAIC API, and 
the use of those techniques is expanded to cloud environments 
to collect information. In that paper, detection of violations 
from service level agreements to avoid any cost is not taken 
into account, nor is it commonly done. This is because the 
method only controls the programs which have been developed 
by using mOSAIC API. A lot of discussion has been made on 
providing dynamic service level agreements by using GRIA. 
Monitoring based on service level agreements is one of the 
advantages of this method, and failing to map low-level criteria 
to high-level criteria as well as being limited to a grid network 
is regarded as one of its disadvantages [19]. Independent 
management of quality of service (QoS) in a static environment 
has been discussed by using a method, like a proxy, whose 
implementation is based on a web-service agreement. In this 
regard, using service level agreements to prevent the abuse of 
parameters of quality of service is an advantage, but being 
limited to web services is a disadvantage [20]. Accessibility of 
historical data to provide a service level agreement and ability 
to evaluate the conditions of the agreement are considered as 
the advantages, while the lack of monitoring the low-level 
criteria and failure to map it to high-level contents are the 
disadvantages of that study [21]. The study in reference [22] 
presents a cloud exchange method with such strengths as better 

performance, reduced cost in cloud environments, and lack of 
support for dynamic scheduling. Indeed, an approach is 
presented to adapt a user service level agreement template to 
general agreements. One advantage of this method is that the 
restriction of static agreements is resolved with this template 
and mapping is defined between the public and private 
agreements. On the other hand, imposing costs on users and 
lack of linear management of the violation of service level 
agreements are regarded as the disadvantages of the method 
[10]. In [11], an infrastructure is provided to detect violations 
from the Desvi architecture agreement. This architecture 
automatically detects the violation of service level agreement 
in static intervals. Minimizing the interaction with users and 
preventing the violation of service level agreement are the 
advantages of this approach, but increased time overhead in 
short intervals is a disadvantage. In reference [23], the Bee-
MMT method has been presented to reduce violations of 
service level agreements in static intervals as a requirement to 
enhance the quality of services and satisfy the customers. 
Reduced energy consumption, leading to more violations of 
service level agreements, as compared to other methods, is the 
advantage of that study. However, it is disadvantageous due to 
the reduced time overhead of system and the lack of 
dynamization. Using a genetic algorithm, a smart mechanism is 
devised to find the dynamic time intervals to monitor and 
optimize the conflict of interests in Desvi architecture.  Failing 
to reduce the overhead time applied to the system as well as 
failure to provide accurate information on implementation is 
considered as a disadvantage of that study [24]. In [25], a 
colonial competition algorithm is presented to deal with the 
conflict of interests between system overhead and violation in 
cloud computing. This algorithm is intended to find dynamic 
intervals in Desvi architecture. Establishing a relative balance 
between a situation in which intervals are longer and one in 
which the intervals are selected from short intervals is an 
advantage of the study. However, it may be criticized for the 
lack of implementation in the Cloud sim environment. 
Evolutionary algorithms can be used to choose dynamic time 
intervals. The use of such algorithms depends on the number of 
intervals which can be examined to detect violations.  Given a 
high workload of the used Planet Lab, at each attempt to 
achieve a dynamic interval, the workload increases, and, using 
a manual method, it is not possible to calculate the time 
overhead or to detect violations. A PSO algorithm is used in 
that paper owing to its high convergence speed in achieving the 
personal best (PBest). 

 

III. PROPOSED ALGORITHM 

The current challenge in detecting the violations of service 
level agreements is that, as the smaller the time interval is, the 
more violations are detected, and the longer the overtime will 
be. On the other hand, when the time interval is selected to be 
larger, the number of violations detected and the time overhead 
applied to the system will be lower. The main goal is to 
establish a balance between the time overhead of the system 
and the number of violations detected. The time interval in 
static intervals increases due to detection of more violations 
[11]. When there is a direct relationship between the time 
overhead and the number of violations, a system failure will 



International Journal of Science and Engineering Investigations, Volume 7, Issue 76, May 2018 15 

www.IJSEI.com            Paper ID: 77618-02 ISSN: 2251-8843 

result. In order to solve this problem, we search for dynamic 
intervals. To select the best time intervals with which to 
achieve the mentioned balance, a method is presented in this 
paper. These time intervals should be able to establish a 
balance between the system time overhead and the number of 
violations detected. To this end, for each of the parameters of a 
service level agreement, a workload is generated based on the 
pre-assumed workload of the cloud sim library. This workload 
needs to evaluate the rate of violations at each time interval in 
minutes. As Planet Lab data report only the number of 
violations detected in an interval, which is an integer multiple 
of 5 minutes, they are not appropriate for our method. For this 
reason, we require to generate a workload so that we can 
determine the number of violations detected at any certain 
time. Each workload is evaluated as 1440 minutes for one day. 
Given the selected time interval m, the number of times a 
system violation is recorded is obtained using equation (1) as 
follows:  

1440
,1 1440p m

m
                (1) 

where m represents minutes. For each time interval m, it is 
required that the cost of measurement, which has a direct 
relationship with the length of the interval, and the number of 
violations detected be calculated. To create a balance between 
the cost of measurement and the number of violations detected, 
equation (2) is used [11]: 

 
 , ,

m v
φ cpu memory Storge

c= μ α φc c


               (2) 

where μ is the number of measurements, 
mc is the cost of 

measurements,  α φ is the number of the undetected 

violations of the service level agreement, and 
vc  is the cost of 

the loss of agreement violation. In equation (2), the number of 
measurements has a direct relationship with time. For example, 
if the measurement intervals are 5 minutes and our workload is 
implemented for one day (24 hours), the number of 
measurement intervals will be 1440 minutes. Accordingly, the 
number of measurements will be 522 for 10-minute intervals. It 
is clear that this number will be lower for intervals with a 
larger length and larger for intervals with a smaller length. The 
sum of these parameters should establish a balance between the 
cost of measurement and the cost of undetected violations.  As 
the number of the selected intervals is high and since the total 
workload should be evaluated at each selected interval in a 24-
hour period, we are looking for a time interval which can 
establish a balance between the cost of measurement and the 
number of violations detected. For this purpose, a time interval 
of m is selected, among all other intervals, minimizing the 
value of equation (2). Considering what is stated above, to find 
an interval among the current time intervals, an evolutionary 
algorithm is required. Accordingly, the PSO algorithm is used 
in this paper. As previously explained, finding the best time 
interval that can establish a balance between the measurement 
cost and the number of undetected violations is considered as 
an innovation of this study. In other words, the study aims to 
find a dynamic interval determined based on the conditions of 

the problem. It means that this interval can vary by a change in 
the workload, the parameters of Service level Agreement, the 
number of virtual machines available in the cloud space, and 
the way to allocate each job of the workload to a virtual 
machine. The main objective of this paper is to dynamize the 
selection of time intervals to measure the number of violations 
detected per a workload in any condition. 

A. Particle swarm optimization 

Particle Swarm Optimization (PSO) method has been 
inspired by the social behavior of a group of birds or fish in 
search for food to direct the population to a promising area in a 
search space [26, 27]. Each bird uses the past experiences of 
other members to find food. The main base of the particle 
swarm optimization algorithm is sharing of information among 
the group members. In the particle swarm optimization 
algorithm, the solution of each problem is the bird position in 
the search space, known as ‘particle’. All the particles have a 
merit gained through a fitness function, which is the 
optimization goal. In addition, each particle has a component 
called ‘speed’, which specifies its path in the search space. The 
particle swarm optimization algorithm begins with a group of 
random solutions. Then, it begins searching to find an optimal 
solution in the problem space by updating the situation and the 
speed of each particle. Each particle is defined in a 
multidimensional form (depending on the problem nature) with 

two values, idX  and idV , which represent the place and the 

speed related to the dth dimension and the ith atomic particle 
respectively. At any step of the population movement, each 
particle is updated based on two best values. The first value is 
the best solution in terms of merit, obtained for each particle 
separately so far. This value is the best person called ‘pbest’. 
The other best value obtained by the particle swarm 
optimization algorithm is the one obtained by all the particles 
in the population. This value is the general best called ‘gbest’. 
After finding the two values of pbest and gbest, each particle 
updates its new speed and place through the following two 
equations [27]: 

     i  t 1       t    V   t 1i iX X               (3) 

1 1

2 2

( 1) ( ( ) ( )[ ( )]

                        .c ( )[ ( ) ( )])

ij ij i ij ij

i i ij

V t w V t c r t pbest X t

r t gbest t X t

   


                  (4) 

where w is the inertial weight, 1c  and 2c are the acceleration 

coefficients, and 1r and 2r are the random numbers in the 

interval (0 and 1). The final value of the speed of each particle 

is limited to   ,MAX MAXV V  interval to prevent the divergence 

of the algorithm. 1c  , 2c  and w are the PSO parameters, and 

the convergence of the algorithm depends on the value of these 

parameters. 1c  and 2c are the numbers between 1.5 and 2, but 

the best selection is 1 2c c   2.05 and 0  1w   . The 

convergence strongly depends on the value of w , and it is 

better to define it defined dynamically.  In the interval (0.2-
0.9), this value is reduced linearly during the population 
evolution. First, it should be large enough, but, in later steps, a 



International Journal of Science and Engineering Investigations, Volume 7, Issue 76, May 2018 16 

www.IJSEI.com            Paper ID: 77618-02 ISSN: 2251-8843 

small w will result in better convergence. PSO, updating its 

population by using equations (3) and (4), is called base or 
standard PSO [28].  

B. Generation of particles in the PSO algorithm 

      Particle needs to be defined if the PSO algorithm is to 
be used in selecting the best dynamic interval to detect 
violations. Considering the number of parameters in the service 
level agreement, each particle is composed of five parts 
including speed, the best value, and three parameters of 
detecting the violations. These parameters include memory, 
processor, and bandwidth. Since the workload related to 
planetlab is implemented in the intervals of multiples of five, 
they cannot be used for the proposed method. For this reason, a 
new workload based on planetlab will be created, which can be 
implemented and measured in each time interval. This 
workload is implemented in different time intervals, and 
utilization of each workload is determined based on the number 
of physical and virtual machines. To calculate the utilization, 
the value of each job of the workload allocated to the processor 
compares the memory and the bandwidth to the requested 
value of each job. In case of any difference or lack of allocation 
of the job request, the lack of request is calculated in the form 
of violation of that parameter. To use the solutions obtained by 
implementing the workload in each interval, the utilization 
obtained from each job needs to be stored along with its 
corresponding implementation time on one map. The map has 
the role of updating each particle. Accordingly, the particles 
are generated randomly. Then, 12 jobs corresponding to them 
are selected through the map based on the value of each 
parameter of detecting the violation. The value of the fitness 
function related to each selected map is implemented on the 
basis of equation (2). The mean value of the fitness function 
for 12 maps is selected as the best value for that particle. This 
best value is the same as the length of the considered interval. 
Each particle is updated based on its speed and its best value. 
The operation continues as long as the value of equation (2) for 
the best particle in each repetition of the algorithm is not less 
than the threshold value. The best particle is selected, and the 
best value is introduced as the dynamic interval for the 
generated workload after the algorithm is ended. It should be 
noted that the best particle in each implementation of the 
algorithm is a particle whose best value is among the four 
particles. Fig. 1 displays the flowchart of the introduced 
algorithm. 

 

IV. SETTING THE PARAMETERS AND TESTS AND 

EVALUATION OF THE RESULTS 

In order to evaluate the PSO algorithm for utilization of 
memory, processor, and network, among the Planetlab data, 
1440 data are randomly selected as the workload. These data 
are such that, if we consider a day as long as 24 hours, we will 
have 24 × 60 = 1440; that is to say, each day equals 1440 
minutes. It is assumed that the interval value is in minutes. This 
assumption means that calculation in seconds is overlooked 
because it seems that the workload applied to the system is too 
great to investigate the variations second by second. 
Calculations in minutes are, however, more rational.  

 

Figure 1.  Flowchart of the proposed algorithm in finding the dynamic 

interval 

 

As stated before, prior to applying the PSO algorithm, it is 
required that a map be generated. In this study, the number of 
particles for each implementation of the algorithm is 
considered four, and the threshold value is set to be 0.5.After 
implementing the PSO algorithm once, all the particles are 
arranged in a descending order according to their fitness 
function values. Updating of each particle and determination of 
its direction is done on the basis of its speed. The PSO 
algorithm output, which is the best time interval proposed, can 
be evaluated in two aspects. In one aspect, the highest number 
of violations taking place in time intervals is detected. In the 
second aspect of evaluation, the time overhead is applied to 
system, which has been reduced in some time intervals. To 
simulate this operation, the Cloud sim Library version 0, 3, 3 is 
used. This simulation is done by the NetBeans IDE 8.1 
software. In the simulation environment, 50 physical devices 
have been designed, and 50 machines have been designed in 
each device. Table 1 illustrates the features of the selected 
physical and virtual machines. 



International Journal of Science and Engineering Investigations, Volume 7, Issue 76, May 2018 17 

www.IJSEI.com            Paper ID: 77618-02 ISSN: 2251-8843 

TABLE I.  FEATURES OF THE SELECTED PHYSICAL AND VIRTUAL 

MACHINES 

 Operating system Processor RAM memory 

physical machine Linux 4-core 4GB 

virtual machine Ubunta 1-core 1 GB 

 

In order to examine the rate of violations of the service 
level agreement in the PSO algorithm by the request of the 
memory user, it is assumed that the user’s request of the 
memory has been at least 700 MB. As shown in (Fig. 2), in 
different minutes of a day, different values of the memory are 
allocated by the host to the user. The horizontal axis is the time 
in minutes, and the vertical axis is the amount of memory 
allocated to the host in MB. 

 

 

Figure 2.  Memory allocated to host 

  

Fig. 3 illustrates the relationship between time intervals and 
SLA (Service Level Agreement) violations. The diagram 
indicates that, in most cases, more violations are detected in 
shorter time intervals. For example, for a 5-minute interval, 
130 MB of memory is obtained. These values have been 
obtained before giving them to the PSO algorithm. 

 

 

Figure 3.  SLA violations detected in time intervals 

 

 Fig. 4 shows the relationship between the time used to 
detect the violations and the time intervals. As suggested by the 
figure, the time used to detect 130 violations is equal to 
7056343 nanoseconds. The goal of PSO is to obtain the time 
interval in which the SLA violations are increase and the time 
overhead applied to the system is reduced. 

 

 

Figure 4.  Time overhead applied to the system 

 

  As stated before, the generated map includes the rate of 
violations corresponding to the service level agreement 
parameters and the time of finding them in the determined 
interval for one day, given as the input to the PSO algorithm. 
According to the history of the map, this algorithm decides in 
which interval the balance between the implementation time 
and the number of the detected violations has been established. 
In the present study, after completion of the algorithm, the best 
particle is obtained with the time interval of seven. Fig. 5 
suggests the reason for selecting this interval. In this figure, the 
horizontal axis represents the time interval, and the vertical 
axis represents the value of the cost function. As the figure 
further shows, in the time interval of seven, the lowest value is 
obtained from equation (2). In other words, in this interval, 
there is a balance achieved between the number of the detected 
violations and the implementation time. 

 

 

Figure 5.  Fitness function value in the PSO algorithm 

 



International Journal of Science and Engineering Investigations, Volume 7, Issue 76, May 2018 18 

www.IJSEI.com            Paper ID: 77618-02 ISSN: 2251-8843 

There are twelve intervals selected. Selection of this 
number is due to the fact that, in intervals more than twelve, 
the number of detected violations is reduced significantly and 
the number of undetected violations is increased. This 
increases the value of the fitness function in these intervals. To 
examine the utilization of the PSO algorithm, another test is 
conducted using a genetic algorithm. This test environment has 
been considered similar to that of the PSO algorithm. On this 
account, the input map of the genetic algorithm is the same as 
the input map of the PSO algorithm. Similarly, the number of 
genes is equal to the number of particles, and the fitness 
function has been considered the same as equation (2). As 
illustrated in Fig. 6, the genetic algorithm in the sixth interval 
has the minimum value of the fitness function. In general, by 
comparing the values of the fitness functions of the PSO and 
genetic algorithms, one can find out that the PSO algorithm can 
detect more violations in time intervals. This is because the 
value of equation (2) is higher when the minimum number of 
the undetected violations is high. 

 

 

Figure 6.  The value of fitness function in the GA algorithm 

 

     Fig. 7 compares the PSO algorithm with the genetic 
algorithm. The goal of both PSO and genetic algorithms is 
reducing the time overhead applied to the system and reducing 
the number of violations. 

 

 

Figure 7.  Comparing the PSO and the GA algorithms 

V. CONCLUSIONS 

In a cloud computing environment, appropriate facilities 
such as processors, input and output systems, bandwidths, and 
memory are provided in the form of heterogeneous resources 
for users. In this paper, a method is presented to detect the 
highest number of violations of the service level agreement in 
dynamic time intervals based on the PSO algorithm. To test the 
utility of PSO versus another algorithm, an experiment is 
performed through the genetic algorithm. The environment of 
this experiment has been set to be similar to that of the particle 
swarm algorithm. For this purpose, the input map of the genetic 
algorithm is considered to be the same as the input map of the 
particle swarm algorithm. Also, the number of genes is equated 
to the number of particles. The findings indicate that the 
genetic algorithm in the sixth interval has the minimum value 
of the fitness function. 

In general, through a comparison of the values of the fitness 
functions of the two algorithms, it has emerged that the particle 
swarm algorithm can detect more violations in time intervals. 
This is because the value of the fitness function increases when 
the minimum number of the undetected violations is higher. 

 

REFERENCES  

[1] Y. Foster, I. Zhao and S. Lu. Raicu, “Cloud Computing and Grid 
Computing 360-Degree Compared. Grid Computing. Environment,” 
Workshop, IEEE, 2008, pp. 1–10. 

[2] A. Goscinski and B. Michael, “Toward Dynamic and Attribute Based 
Publication, Discovery and Selection for Cloud Computing. Journal of 
Future Generation Computer Systems,” vol. 27, no.7, 2010, pp. 947-970. 

[3] S. r. Pakizeh, “cloud computing simulator,” Volume 2, first edition, 
Tehran, Pardis Danesh, 2012. 

[4] M. Goldner and K. Birch, “Resource sharing in a cloud computing age,” 
Interlending and Document Supply, vol.40, no.1, 2012, pp. 4-11. 

[5] SH. Jamali, S. Malek Taji and M. Analuei, “Positioning the virtual 
machines using the colonial competitive Algorithm,” Electrical 
Engineering Magazine, Tabriz University, issue 1, Volume 46, Spring 
2016, pp.53-62. 

[6] R. Buyya, J. Broberg and A. Goscinski, “Cloud Computing: Principles 
and paradigms,” John Wiley and Sons, vol.87, 2010. 

[7] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,” 
NIST Special Publication, 2011. 

[8] M. White, H. Melvin and M. Schukat, “The Impact of Dynamic 
Monitoring Interval Adjustment on Power Consumption in Virtualized 
Data Centers”, 2014. 

[9] W. Long, L. Yuqing and X. Qingxin, “Using cloudsim to model and 
simulate cloud computing environment. In Computational Intelligence 
and Security,” 9th International Conference on IEEE, 2013, pp.323-328. 

[10] M. Maurer, V. C. Emeakaroha, I. Brandic and J. Altmann, “Cost–benefit 
analysis of an SLA mapping approach for defining standardized Cloud 
computing goods,” Future Generation Computer Systems, vol.28, no.1, 
2012, pp. 39-47. 

[11] V. C. Emeakaroha, M. A. S. Netto, R. N. Calheiros, I. Brandic, R. 
Buyya, C. A. De Rose and et al, “Towards autonomic detection of SLA 
violations in Cloud infrastructures. Future Generation Computer 
Systems,” vol.28, no.7, 2012,  pp. 1017-1029. 

[12] W. Hussain, F. k. Hussain, O. Hussain and R. Bagia, “Change, E., Risk- 
based Framework for SLA Violation abatment from the Cloud Servise 
Provider's perspective.The Computer Journal,” 2018. 

[13] M. A. T. Rojas, F. F. Redigolo, N. M. Gonzalez, F. V. Sbampato, T. C. 
M. de Brito Carvalho, K. W. Ullah and A. S. Ahmad, “Managing the 
Lifecycle of Security SLA Requirements in Cloud Computing, In 



International Journal of Science and Engineering Investigations, Volume 7, Issue 76, May 2018 19 

www.IJSEI.com            Paper ID: 77618-02 ISSN: 2251-8843 

Developments and Advances in Intelligent Systems and Applications, 
Springer,” Cham, 2018, pp.119-140. 

[14] T. Wood, P. Shenoy, A. Venkataramani and M. Yousif, “Sandpiper: 
Black-box and gray-box resource management for virtual machines,” 
Computer Networks, vol.53, no.17, 2009, pp.2923-2938. 

[15] W. Fu and Q. Huang, GridEye: “A service-oriented grid monitoring 
system with improved forecasting algorithm,” In Fifth International 
Conference on Grid and Cooperative Computing Workshops, 2006, pp. 
5-12. 

[16] D. Gunter, B. Tierney, B. Crowley, M. Holding and J. Lee, Netlogger: 
“A toolkit for distributed system performance analysis.8th International 
Symposium on Modeling,” Analysis and Simulation of Computer and 
Telecommunication Systems, 2000, pp.267-273. 

[17] Micsik, H. M. Frutos, I. Kotsiopoulos and B. Koller “Semantically 
supported SLA negotiation,” 10th IEEE/ACM International Conference 
on Grid Computing, 2009, pp.169-170. 

[18] D. Petcu, B. Di Martino, S. Venticinque, M. Rak, T. Máhr, G. E. Lopez, 
V. Stankovski and et al, “ Experiences in building a mOSAIC of clouds. 
Journal of Cloud Computing”: Advances, Systems and Applications, 
vol.2, no.1, 2013, pp.1-12. 

[19] M. Boniface, S. Phillips, S. Sanchez-Macian and M. Surridge, “Dynamic 
service provisioning using GRIA SLAs,” In Service-Oriented 
Computing-ICSOC  Workshops, 2009, pp.56-67. 

[20] B. Koller and L. Schubert, “Towards autonomous SLA management 
using a proxy-like approach,” Multiagent and Grid Systems, vol.3, no.3, 
2007, pp.313-325. 

[21] M. Comuzzi, C. Kotsokalis, G. Spanoudkis and R. Yahyapour, 
“Establishing and monitoring SLAs in complex service based systems. 
Proceedings of the 7th International Conference on Web Services,” 
2009, pp.783–790. 

[22] J. Tordsson, R. S. Montero, R. Moreno-Vozmediano and I. M. Llorente, 
“Cloud brokering mechanisms for optimized placement of virtual 
machines across multiple providers,” Future Generation Computer 
Systems, vol.28, no.2, 2012, pp.358-367. 

[23] S. Saravanan, V. Venkatachalam and S. T. Malligai, “Optimization of 
SLA violation in cloud computing using artificial bee 
colony. International Journal,” Adv. Eng, vol.1, no.3, 2015, pp.410-414. 

[24] S. Zanganeh and A. Farahi, “Proposed approach to find optimal cost of 
automatic detection of service level agreement in Desvi architecture by 
allocating dynamic intervals,” National Conference on Computer 
Engineering and Information Technology Management, Tehran, 2014. 

[25] N. Ghafuri and F. Saadatjoo, “ Find the Best Time Intervals in the 
Control of Service Level Agreement Commitments in Cloud Computing 

Using Colonial Competitive Algorithm. International Science and 
Investigation journal,” vol.4, no.4, 2015, pp.20-35. 

[26] W. M. Korani, H. T. Dorrah and H. M. Emara, “Bacterial Foraging 
Oriented by Particle Swarm Optimization Strategy for PID Tuning,” 
International Symposium on Computational Intelligence in Robotics and 
Automation, 2009, pp.445-4506. 

[27] R. Houshmand, H. Mohkami and A. Khodabakhshian, “new method for 
optimal positioning of capacitors and generators distributed in 
distribution networks Using PSO-oriented bacteriological search 
algorithm. Tabriz Electrical Engineering Magazine,” Issue 2, Volume 
39, Spring 2016, pp.53-65. 

[28] J. Kennedy and R. C. Eberhart, “A discrete binary version of the particle 
swarm algorithm,” International Conference on Computational 
Cybernetics and Simulation, vol.5, 1997, pp.4104-4108. 

 

 

 

Fatemeh Saadatjoo received her B.Sc. and M.Sc. 

and Ph.D. degrees from the computer Science 

department of Yazd University, Iran, in 1998, 2000 

and 2009, respectively. She is currently an assistant 

professor in the C. department of Science and Art 

University, Yazd, Iran. Her areas of interest include 

software engineering, data base, data mining and fuzzy systems.  

 
 

Mohammad Javad Rezaei Received her B.sc 

Degree on Computer Software From Science and Art 

University, Yazd, Iran in 2014.He  is Currently a 

M.sc Student Continuing Computer Software at 

Science and Art University, Yazd, Iran. His research 

interests are in the Field of Cloud Computing and Deep learning.  

 
 

Marziyeh Rahmani Received her B.sc Degree on 

Computer Software from Pooya University,Yasuj, 

Iran in 2012.She is Currently a M.sc Student 

Continuing Computer Software at Science and Art 

University, Yazd, Iran. Her research interests are in 

the Field of Cloud Computing. 

 


	I. Introduction
	II. Review of literature
	III. Proposed algorithm
	A. Particle swarm optimization
	B. Generation of particles in the PSO algorithm

	IV. Setting the parameters and tests and evaluation of the results
	V. Conclusions
	References


