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Abstract- A vast number of 3D objects surrounding us are 
spheroids, and in the case of our universe it certainly is more 
than evident. These objects are often geometrically similar, or 
more generally topologically homeomorphic, to spheres which 
over the past centuries have played an important role in 
mathematical sciences. Without them concept of the Riemann 
sphere, which is fundamental in defining the complex number 
and all the theories associated with it, would not exist. Despite 
its immense usefulness, the sphere alone cannot explain how 
object becomes a 3D spheroid in the first place. To address 
this, we examine a blend between torus and sphere topologies, 
none of which are homeomorphic to each other, and yet the 
combination produces some fascinating 3D objects. How is this 
possible? This paper presents such a possibility by examining 
results from recently proposed globotoroid theory. 
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I. INTRODUCTION  

The main difficulty of any 3D object transformation with 
the time is the space-time requirement. In the classical sense 
we need minimum 4 dimensions; 3 representing the object in 
space, and 1 for the time. This 4-dimensional framework opens 
a complexity that is not easy to model and visualize. For 
instance, if a ring torus was to grow into a horn torus in 3D, 
one would need to compile for each time segment an 
incremental 3D torus transformation. This is an awkward and 
daunting task which requires a lot of time to accomplish. What 
is an alternative?    

Suppose the time variable can now be implicitly stated 
within the 3 space variables describing the torus objects. This 
would make the space-time requirement 3-dimensional, and as 
the time is implicit this space would play dynamic realizations 
of the 3 toroidal variables. That is, by visualizing these toroidal 
variables in the 3D space, one would experience a 
transformation of the ring torus as it grows into the horn torus.  
Nice, but how does one accomplish this? 

The process of implicitly imbedding the time into space 
variables is one of the main properties given by the ordinary 
differential equations (ODE). The solutions of these equations 
form a dynamical space, usually the Euclidean space modeled 
by the real coordinate system R

n
, where n is the space 

dimension. For the present discussion n will always be 3, and 
our space will always be R

3
, or 3D. 

In the next section it is demonstrated how this idea works 
by using recently reported results from the globotoroid model 
[1]. In its basic form this model has 3 ODE equations with 3 
parameters which produce a wide variety of spherical and 
toroidal solutions in R

3
. These solutions are trajectories that are 

analogous to spherical spirals, or scrolls, known as the 
loxodromes [2,3].  The exception in the present case is that 
here loxodromes have some unique features not previously 
reported. These will be revealed together with a surprising 
space-time structure in R

3
 resulting from their dynamics. The 

paper concludes by discussing this simple equation and its 
modeling opportunities in physics, engineering and cosmology. 

 

II. THE GLOBOTOROID MODEL AND ITS SPACE-

TIME SOLUTIONS 

A.  The Spheroids 

The model originally reported in [4,5,6], and subsequently 
termed as the globotoroid in [1], was slightly modified to 
produce the following 3 ODEs with 3 coefficients, 

d X(t)/dt=ω Y(t)-AZ(t)(X(t) 

d Y(t)/dt=-ω X(t)              (1) 

d Z(t)/dt=-B+A[X(t)
2
+Y(t)

2
+1]  

Here, t is the time, X(t) and Y(t) are referred to as the 
action, or orbital, space-time variables, the coefficient ω=2πf is 
angular frequency with f>0 being the orbital frequency. The 
space-time variable Z(t) is the growth variable and is 
stimulated by the growth parameters A, B>0.  

To solve (1) it is recommended to use the Euler method, 
which was also applied in [1]. The stiff ODE solvers are not 
recommended for this equation as they tend to obscure the 
solutions.  

Similarly, to what was reported in [1,6], (1) has only one 
possible equilibrium solution which is given by X=0, Y=0 and 
B/A=1. More precisely, this solution defines a singular 
manifold along Z axis, where for Z<0 all the points are 
unstable, otherwise they are stable. As such, B/A=1 establishes 
a criticality condition at which the 3 space-time solutions form 
spheres, or spheroids. The spherical solutions are described by 
the loxodromic type trajectory whose scroll is determined by 
the orbital frequency f. For instance, the sphere solutions in 
Fig. 1A) are obtained for the set of coefficients A=B=5, f=2Hz 
and the initial conditions X0=.005, Y0=0 and Z0=-1. 
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Figure 1.  The frequency dependent spheroid solutions 

 

Here, the space-time solutions are computed using the 

Euler method with the time increment t=0.00005. Fig. 1B) is 
evaluated using the same set of coefficients and initial 
conditions, with the exception that now f=5Hz. The loxodrome 
for f=20Hz is depicted in Fig. 2A), and by continuing to 
increase f, the loxodrome gradually covers more of the sphere 
surface. Since the orbital frequency defines the spheroid 
together with its loxodrome, we also refer to f as the frequency 
of construction.  

The question now is; what is inside the spheroid? By itself 
spheroid is hollow, however, by changing the initial conditions 
a set of concentrically nested spheroids fill its interior, Fig. 
2B). For any given f, each spheroid is defined by a loxodrome 
which does not interact with other loxodromes in the nest. 
From the practical point of view this compact nest formation is 
highly unlikely. In natural processes it is difficult to maintain 
condition A=B for a long time.  

This setting, and its stability, closely resemble the phase 
space of the center type equilibrium in second-order ODEs. 
The difference is that in the latter case solutions are periodic, 
while for the concentric spheroid nest solutions are nonperiodic 
loxodromes.  

Although the loxodrome exhibits spirals, it does not repeat 
with time. It begins at any unstable point on the singular 
manifold, and after coiling over a spheroid, it ends on the 
opposite side of the manifold. For (1) all the space points [0,0, 

Z<0] are the unstable singularities, while [0,0, Z≥0] are the 

stable ones. 

 

 

Figure 2.  The spheroid cover and the concentric nest 

 

B.  The Growth Parameters A and B 

Let’s now consider the case when A≠B, which implies 

that (1) is free from singularities. This case was fully 
investigated in [1,4,5,6]. Here, only the summary of the 
reported results is provided. 

For B/A<1 it was shown that the singular manifold turns 
into the slow linear manifold, which with time deflates the 

spheroid nest. In this case all loxodromes escape to +∞ along 

the Z-axes, making this dynamics uneventful. 

In contrast, for B/A>1 dynamics becomes more interesting. 
Fig. 3 illustrates the space-time solutions for B=5, A=4.5 and 
the frequency of construction f=10Hz. The 3 cycles observed 
in 3 space-time solutions spend more time along the linear 
manifold than on the sphere. These solutions now form the 
periodic loxodrome, which in Fig. 3 also exhibits 3-cycles over 
25 units of time, implying its period is about 8-time units, 
(note, when f is in Hz, the time unit is in seconds).  

To recap, by letting B>A, the slow dynamics exerted along 
the linear manifold connects internally the spheroid poles and 
changes a nonperiodic loxodrome into a periodic one. This is 
the first time that any loxodrome is reported as having a 
periodic behavior, and together with being frequency 
dependent, the loxodrome sheds new light on spheroid 
dynamics. 

 

 

Figure 3.  The periodic solutions and the loxodrome 
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Figure 4.    The globotoroid nest 

 

What about all the concentrically nested spheroids in Fig. 
2B)? They too get effected by transforming into tori. 
Collectively, spheroids and tori form a nest, which for 
visualization is presented as segmented in Fig. 4A). However, 
rather than being segmented, this nest is connected and allows 
the solutions X(t), Y(t) and Z(t) to scroll over its constituents, 
Fig. 4B). The scroll is inflating if the inner core expands, and it 
is deflating if the core contracts.  This behavior was previously 
noted in [1,5].  

In conclusion, for B>A the slow dynamics along the linear 
manifold changes the nest of concentric spheroids into the 
blend of connected spheroids and tori, hence, the name 
globotoroid. In addition, the linear manifold stimulates the 
globotoroid inflation, or deflation. For inflation the scroll is 
expanding, otherwise it is contracting.  

C. The Wormhole 

Why is this space-time object derived from the Einstein 
field equations, and also referred to as the Einstein-Rosen 
bridge [7,8], related to the globotoroids? To start, in both cases 
this bridge applies to curved spaces. The bridge forms a narrow 
opening which shortens the distance between maximally 
displaced curvatures, and in the present case this is between the 
spheroid poles. Moreover, this opening now allows loxodrome 
to reconnect.  

However, one can argue that there is no wormhole in Fig. 4 
since the spheroid with connected poles could be topologically 
interpreted as being a special case of torus. This interpretation 
would be incorrect, and the reasoning is that when we look at 
the nest in Fig. 4A), we can notice a distinct difference 
between the black spheroid and the rest of tori. This can also be 
noted in Figs. 4 and 6 in [5]. The difference results from the 
evolution of the red ring torus into the aqua horn torus, Fig. 
4A). Once the horn torus is reached, the toroid structure wants 
to evolve further into the spindle torus. This, however, is 
dynamically impossible as it violates uniqueness of solutions at 
the spindle cross-points, Fig. 5. Thus, the solutions abandon the 
torus topology, and instead they elect the path of the linear 
manifold which drills the wormhole connecting the spheroid 
poles. As a result, this connection is always a straight line and 
lacks the usual toroidal curvature. 

This newly imposed dynamic constraint reduces the torus 
hole into the wormhole and opens a path for loxodromes to 

reconnect. During inflation the wormhole remarkably 
empowers transformation of tori into spheroids, while the 
empowerment is reversed during deflation.   

 

 

Figure 5.  The cross-sections of the 3 different torus types 

 

The wormholes have many interesting properties which 
will not be addressed here. However, there is one property that 
needs to be mentioned. For the inflationary globotoroid, the 3 
space-time solutions are limited by the wormhole “choking” 
[1,6]. That is, as the globotoroid inflates it cannot grow 
indefinitely because the wormhole opening shrinks with time. 
Eventually, comes a point at which the 3 solutions, or the 
loxodrome, start to choke. At that point the limiting spheroid is 
reached, and inflation stops. The loxodrome circulates the 
limiting spheroid, while the choking sets off a soft 
indeterminism which makes the space-time solutions weakly 
chaotic [1,4,5,6]. When the globotoroid deflates, the solutions 
are moving away from the choking region, and are attracted by 
the core where the limit cycle resides [1].   

 

III. DICUSSION 

With use of the simple 3-dimensional ODE it was 
demonstrated that its space-time solutions can describe 
spheroids in terms of the frequency regulated loxodromes. The 
behavior of spheroids and its loxodromes are further controlled 
by the growth parameters, A and B. When these parameters are 
equal the spheroids are organized in the concentric fashion, 
otherwise they inflate or deflate. For A>B, all spheroids deflate 
as loxodromes escape to infinity, while for A<B interesting 
dynamics occurs. Here, the concentric spheroids turn into the 
globotoroid nest, which externally continues to support the 
spheroid geometry, while internally the toroid topology 
emerges. This nest organization is threaded by the wormhole 
which keeps the size of the nest limited and allows space-time 
solutions to scroll and form periodic loxodromes. When the 
scroll expands, loxodromes form the limiting spheroid. For the 
contracting scroll, the toroidal core with its limit cycle becomes 
a limiting set.  

This diverse space-time behavior potentially offers many 
different applications of globotoroids in science and 
engineering. In physics it expands our understanding of angular 
momentum in the presence of wormholes. Fig. 6, entitled “The 
Worm”, illustrates how angular momentum expands a tiny 
worm within the wormhole. When the angular momentum is 
conserved, the tiny worm will spin faster than its expanded 
version on the sphere. In addition, if each yellow dot on the 
expanded worm represents a mass unit, then the total point 
mass of the tiny worm becomes very large. As a result, we now 
have a large mass, spinning very fast, inside the wormhole. 
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Figure 6.  Angular momentum 

 

Which brings us to cosmology and the subject of how 
energy and matter interact in our universe. Various celestial 
objects, including quasars, black holes, neutron stars and birth 
of young stars can be modeled using the globotoroid models. 
As a matter of fact, the doughnut theory of universe proposed 
by Alexi Starobinski and Yakov B. Zel'dovich in 1984 [9,10], 
treats the shape of universe as being a 3-dimensional torus. In 
this case analysis is still 4-dimensional and the model is not 
dynamic. The donut theory model can never produce spheroids 
as the wormhole is absent, and the underlined toroid topology 
is exclusive.  

Another potential application of globotoroids is modeling 
of magnetic wormholes [11,12]. Here, the field of a magnetic 
source appears as an isolated magnetic monopole passes 
through the magnetostatic wormhole piercing the magnetically 
undetectable ferromagnetic sphere.  

The globotoroid model is also used in mathematics to 
connect the subject of topological surgery with natural 
phenomena [13,14]. Some examples are, modeling extreme 
weather conditions, DNA recombination and DNA clamps, the 
electromagnetic near and far field pattern formations and the 
predator-prey type modeling in biological and economic 
systems. In conclusion, the globotoroid model has a right 
balance of topology and dynamics which in future may provide 
a more complete modeling platform for different phenomena in 
science and engineering. 
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