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Abstract-This paper studies the use of functional 
neuromuscular stimulation for stabilizing the standing posture 
of a human body. A skeletal-musculotendon-muscle activation 
dynamics model is used for the purpose of control strategy 
evaluation. The controller produces muscle activation, based 
on the proportional plus derivative control concept, to stabilize 
the skeletal dynamics with musculotendon torque. The 
performance and robustness of this controller are investigated. 
It can stabilize the standing posture even in the presence of 
variations in body segment mass and sensor noises. Due to 
limitation in the musculotendon forces and the number of 
musculotendon groups utilized, stability can be maintained 
only for initial positions that are reasonably close to the vertical 
configuration. 

Keywords-Spinal Cord Injury, Functional Neuromuscular 

Stimulation, Control 

 

I. INTRODUCTION 

In the US, there are approximately 10,000 new cases of 
spinal cord injury (SCI) each year mostly caused by auto 
crashes, violence, falls and other accidents. The number of 
people in the US who are alive and have SCI has been 
estimated to be between 183,000 and 230,000. According to 
the National Spinal Cord Injury Database, depending on the 
age at injury and severity, the average lifetime health care and 
living costs that are directly attributable to SCI can vary from 
$339,000 to $2.1 millions per patient. These figures do not 
include any indirect costs such as loss in wages and 
productivity. Any improvement in the mobility functions of 
these SCI patients will have major financial and humanitarian 
impacts on our society. Functional neuromuscular stimulation 
(FNS)/functional electrical stimulation (FES) has been 
frequently studied as a way to improve the life of people with 
SCI by restoring the functionality of one's limbs through using 
electrical signals to stimulate the motoneuron. 

A critical part of any FNS/FES system is its control unit. 
Many open [1-5] and closed [6-11] loop control ideas for 
FNS/FES have been proposed in the literature. In order to 
manage the complexity of mathematical analysis, many of 
these existing studies on FNS/FES control are based on 
simplified mathematical models of human body dynamics. For 
example, no muscle activation dynamics is included and a 
double inverted pendulum model is adopted in [9]. Use of such 
simplified mathematical models often impose unnecessary 

constraints, such as the use of ankle-foot orthoses in [9] to 
eliminate ankle rotation, that will reduce the effectiveness of 
these FNS/FES control concepts by making the patient’s 
motion unnatural and demanding higher joint torques. 

This paper presents extended research results based on the 
innovative FNS/FES control strategy proposed in [12]. It is 
based on a full-scale, detailed models of human body dynamics 
[13]. Using the minimum number of musculotendon groups, a 
paraplegic patient’s standing posture can be stabilized, in 
computer simulations, even in the presence of variations in 
musculotendon parameters [12]. To evaluate the practical use 
of this FNS/FES control concept, its performance in the 
presence of other common uncertainties such as sensor noise 
and variations in body segments mass must be investigated. 
The human body dynamics model and control strategy used in 
this study are presented first followed by computer simulation 
results that show this FNS/FES control concept can provide 
robust performance in real world situations. 

 

II. HUMAN DYNAMICS MODEL 

A model of human dynamics that includes the interaction 
among the skeletal dynamics, joint torques, muscle forces, 
muscle contraction dynamics, muscle activation dynamics and 
input stimuli is summarized in the block diagram shown in 
Fig.1. 

 

 

Figure 1.  Block diagram of human body dynamics. 

 

The skeletal dynamics model, shown in Fig. 2, is used to 
simulate how a body segment moves under a given torque and 
how it affects other segments. It is based on the assumptions of 
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planar model, rigid body segments, bilateral symmetry and no 
excessive motion of the upper body segments [13, 14]. The 
anthropometric data used in the simulation is taken from [15]. 
A joint constraint model [16], which uses passive joint moment 
to prevent the joints from hyperextension, is also embedded in 
this skeletal dynamics model. The normalized musculotendon 
model discussed in [17] is used to compute all the 
musculotendon forces. The muscle activation model adopted in 
[8, 13] is also included in Fig. 1. 

 

 

Figure 2.  Planar model for standing posture and the foot model. 

 

III. CONTROLLER DESIGN 

To avoid introducing control redundancy, only three pairs, 
i.e. six, of flexor-extensor musculotendon groups are used in 
this control study, one pair for each joint in Fig. 2, to produce 
restoring torque in both directions. The states of the human 
body dynamics depicted in Fig. 1 can be partitioned into 4 
groups: 

T

x= θ θ F a 
                (1) 

where: 

θ  is a 3x1 angular position vector,  

θ  is a 3x1 angular velocity vector,  

F  is a 6x1 normalized force vector and  

a  is a 6x1 activation vector. 

and the mathematical model of the human body dynamics is: 

x=f(x,u)               (2) 

The controller design is restricted in several ways: 

1.  Bounded states. Some of the states are bounded or 

one-sided. For example, the musculotendon force cannot be 

negative. 

2.  Bounded input. Activation is bounded between 0 and 

1 since the musculotendon cannot develop negative force and 

the activation is normalized (a(t)=1 is fully activated). The 

motoneuron input cannot exceed 1 without letting the 

activation surpass its upper limit. Thus, the motoneuron input 

u(t) must be restricted between 0 and 1 as well.  

3.  Output feedback. The outputs or the measured states 

are the angular positions and the angular velocities of the body 

segments. Full state feedback cannot be used in this instance 

since the musculotendon forces and the activation states are 

unknown. Therefore, the controller’s input must contain only 

the output states. 

The block diagram of the closed-loop feedback system is 
shown in Fig. 3.  

 

 

Figure 3.  Closed-loop block diagram 

 

Although there are many published literature on the control 
of nonlinear systems, most of them are unsuitable for 
stabilizing human body dynamics (2) around the upright 
standing posture. For example, the classical control design via 
linearization approach will not work well with a 
musculotendon model, such as the one adopted here, where 
many functions are one sided and not continuously differential. 
The high number of state and input variables makes offline 
training of a neurocontroller [18] too time consuming and 
therefore unrealistic. Online training of a neurocontroller [19] 
is also infeasible due to the unstable nature of human standing 
posture. The robust control approach proposed in [20] 
guarantees global stability for one-sided control system such as 
human body dynamics. However, its implementation requires 
full state feedback which is not available in this study. 

Previous researches on the stabilization of systems [21, 22] 
similar to our human body dynamics show that the skeletal 
system presented in Fig. 2 can be stabilized by applying 
torques at its three joints using controllers based on the 
proportional plus derivative (PD) control concept, see Fig. 4. 
The design of such a controller for the skeletal dynamics can 
be based on its linearized model. If we can produce the output 
of the PD controller using the musculotendon, the skeletal 
dynamics can be stabilized. Based on the assumption that 
response time of muscle activation and musculotendon forces 
are substantially shorter than that of the skeletal dynamics, the 
controller design presented in Fig. 5 will be used in this study. 
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Figure 4.  PD controller for the skeletal dynamics. 

 

 

Figure 5.  Block diagram of the proposed controller and human body 

dynamics. 

 

As an example, a PD controller is designed using a state-
space representation of the linearized skeletal model. At this 
point, the torques generated at the joints are generated by 
idealized servomotors and not limited by any shortcoming in 
the musculotendon groups. First, the PD gains are obtained 
using a pole placement technique. Then, these gains are used to 
stabilize the non-linear skeletal model. Since a person can react 
quickly and more stably when the knees are slightly bent and 
the body leans slightly forward, the command (reference) 
positions used in the simulation are slightly changed from the 

perfect upright configuration (/2 rad for all body segments). 
Using these reference positions (shown as dashed straight lines 
in all body segment position response figures), the non-linear 
skeletal model with the PD controller is simulated and the 
result can be seen in Fig. 6. 

 

 

Figure 6.  Time lapse plot of the skeletal model controlled with a PD 

controller. 

 

However, a realistic musculotendon model differs greatly 
from the servomotors. There are differences between the 
desired torques and the actual musculotendon torques due to 

1. Lag time: By estimating the input at a steady state 
condition, the controller introduces a lag time between the 
desired torques and the musculotendon torques. 

2. Input constraints: The original constraint on muscle 
activation is still in place and it limits the musculotendon force. 

Furthermore, even on healthy and oft-exercised muscle, FNS 
can only generate a fraction of the optimal force. The 
efficiency of the electrical stimuli to contract the muscle is 
considerably less compared to the efficiency of the motoneuron 
and this is reflected in our simulations by reducing the upper 
limit of the input to the activation dynamics. From this point 
on, the inputs in all simulations saturate at 0.7 (i.e. 0 < u(t) < 
0.7). In other words, only 70% of the optimal muscle force can 
be generated isometrically by the musculotendon. 

Fig. 7 shows that, due to the difference between the desired 
torques and the musculotendon torques, the posture oscillates 
slightly. Also, small steady state errors persist in the position 
response of the body segments. These steady state errors can be 
corrected by adding integral action to the PD controller. 
However, the control action prediction controller can still 
maintain balance and stabilize the standing posture. 

 

 

Figure 7.  Positions of the body segments of the skeletal model. 

 

IV. BODY SEGMENT MASSES 

The controller robustness is investigated by changing the 
parameters of the human body dynamics, notably the mass of 
body segments. To avoid doing too many computer simulation 
runs, all parameter variations are carried out uniformly on 
every element in the system. For example, when the segment 
mass is underestimated by 10%, it applies to all 3 segments of 
the skeletal model. Fig. 8 shows that the controller can still 
stabilize the standing posture even when the mass is 
underestimated by 50% of the nominal values listed in [15]. 
However, the figure shows that the system starts to behave 
rather erratically, that is, the steady-state positions deviate 
farther away from the reference positions and the amplitude of 
the oscillation grows as well. Just as underestimating the mass 
values, overestimating the mass values also degrades the 
performance of the controller, as can be seen in Fig. 9, even 
when the controller stabilizes the standing posture. At 2.5 times 
the original masses, performance of the controller degrades 
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substantially. The feet start to tip either about the toes or about 
the heels. At this point, the controller is considered incapable 
of maintaining the standing posture. 

 

 

Figure 8.  The effect of underestimating the mass of body segments on the 

standing posture. 

 

 

Figure 9.  The effect of overestimating the mass of body segments on the 

standing posture. 

 

V. SENSOR NOISES 

Some white noise is added to the output of the angular 
positions of the body segments to simulate sensor noise. Noise 
power is set at 10

-8
, and covariance of the noise is 10

-5
. This 

translates to random noise with maximum amplitude of about 
0.025 rad. The standing posture is stable albeit some increased 
oscillations. The skeletal model is then simulated with noise 

power increased to 5x10
-8

. The standing posture is still stable 
with much more visible oscillations, Fig. 10. As the noise 
power equals to 10

-7
, the plant is no longer stable. 

 

 

Figure 10.  Standing posture with sensor noise in position. 

 

Another noise block is then used to simulate sensor noise in 
body segments’ angular velocity. As shown in Fig. 11, the 
controller stabilizes the standing posture in the presence of 
those noises. 

 

 

Figure 11.  Standing posture with sensor noise in velocity. 

 

Similarly, white noise is also added to both positions and 
velocities of the body segments since most likely noise will 
occur in both positions and velocities in real life. Performance 
of the controller starts to degrade in this case although 
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independently the noises do not affect the posture very much. 
Also, the body segment positions (Fig. 12) show trend similar 
to that found in the position sensor noise. From the time lapse 
plot (Fig. 13), it can be seen that the posture is not good. 
However, the skeletal model remains stable and does not tip 
about the heel nor the toe. 

 

 

Figure 12.  Standing posture with sensor noise in both velocity and position. 

 

 

Figure 13.  Time lapse of standing posture with sensor noise in both velocity 

and position. 

 

VI. INITIAL CONDITIONS 

So far, all the simulations are done with an initial condition 
that is rather close to the reference positions. However, the 
effect of starting the simulation from different initial positions 
still needs to be studied. Computer simulations show that the 
stability of the skeletal system depends greatly on the initial 
conditions. Figs. 14 and 15 show the recovery of the standing 
posture from an initial condition which is farther away from the 
reference positions. The skeletal system cannot recover from 
initial positions that are too far away from the reference 
positions. In fact, it cannot recover from twice the initial 
deviations shown in Fig. 14. This problem arises not from the 
PD controller, but from the magnitude of available 
musculotendon forces. The PD controller can make the skeletal 
model go from a sitting position to the upright position using 
idealized servomotors as actuators. However, the same thing 
cannot be said for the one using musculotendon actuators, 
which would fall almost right away. Comparing the desired 
torques and the actual musculotendon torques shows large 
discrepancies. That is because 6 musculotendon groups are not 

strong enough to make a skeletal model rise to an upright 
position from a sitting position, especially when the activation 
level is further decreased to 70%. However, this may not be a 
major concern since voluntary trunk motion and arm support 
usually contribute to the process of standing up from a sitting 
position [23]. 

 

 

Figure 14.  The body segment positions as they recover from initial positions. 

 

 

Figure 15.  Time lapse plot of the recovery from initial positions. 

 

VII. CONCLUSION 

A control strategy for FNS/FES system is outlined in this 
paper. It is a combination of a PD controller for the skeletal 
model and the control action prediction concept for 
musculotendon activation. It is demonstrated in computer 
simulations that this approach can stabilize the standing posture 
with the minimum number of musculotendon groups. The 
controller can withstand reasonable levels of sensor noises and 
variations in the segment masses. The controller can correct the 
initial posture to the desired standing posture as long as the 
initial posture does not deviate too far from the desired 
standing posture. Minimal number of musculotendon groups 
and lower activation level prevent the controller from 
generating large joint torques necessary for correcting large 
initial deviations from the desired posture. 
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