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Abstract- In this paper, we deal with some forms of Two-Phase 
Unrevised Simplex Method (TPUSM) in solving Linear 
programming Problem (LPP), based on a given problem.  The 
results from an algebraic calculation are checked, using the 
TORA software, a computing software and of reference in 
linear programming. 
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I. INTRODUCTION 

The use of the unrevised simplex algorithm [1, 2, 3] we 
needs a set of m unit vectors which will form one identity 
matrix of order m. In some problems we may get less than m 
unit vectors. There may also be problems which do not contain 
any unit vector. In the last two cases we use the artificial basis 
technique to solve the given LPP. In these cases, one of the 
used methods in solving LPP is Two- phase method.  

After adding artificial variables to the constraints of the 
LPP we get a set of m unit vectors. The latter constitute the 
initial basis. The process of eliminating artificial variables is 
performed in phase-I of the solution and phase-II is used to get 
an optimal solution. Since the solution of LPP is computed in 
two phases, it is called [1, 2, 3, 4] as Two-Phase Unrevised 
Simplex Method (TPUSM). 

In Phase-I, the cost of the artificial variables is taken as -1 
and those of other variables as zero.  We get the new objective 
function as 

Max Z* = (-     -     - … -     ), where     ,         
…,       are artificial variables. The constraints being 
unchanged.   

The problem then is solved by TPUSM. As each      ,   i = 
1…m  is non-negative, the maximum of new  objective 
function  is expected  to be zero. Now three cases arise: 

(1) Max Z* < 0 and at least one artificial vector appear in 
the optimum basis at a positive level. 

(2)  Max Z* = 0 and at least one artificial vector appears in 
the optimum basis  at a zero level.  

(3)  Max Z* = 0 and no one artificial vector appears in the 
optimum basis. 

In case (1) no feasible solution exists to the given LPP and 
hence we do not go to Phase-II to get optimal solution. 

In case (2), we may or may not get an optimum basic 
feasible solution to the original problem. But we move to 
Phase-II to obtain an optimum basic feasible solution, if it 
exists. 

In case (3) we get an initial basic feasible solution to the 
given LPP and then proceed to get optimal solution in Phase-II 
[1]. 

In Phase-II we assign the actual cost to the variables in the 
objective function and a zero cost to every artificial variable 
that appears in the basis at the zero level. This new objective 
function is now maximized by unrevised simplex method 
subject to the given constraints. 

Unrevised Simplex method is applied to the modified 
unrevised simplex table obtained at the end of phase-I, until an 
optimum basic feasible solution has been attained. The 
artificial variables which are non-basic at the end of phase-I are 
removed. This Two- phase method has been studied since long 
[5, 6,7, 8, 9 ] and  recently [3,10,11,12, 13,14]. 

In this paper, we give some forms of Two-Phase method 
and we make a comparison with the existing method. Using the 
TORA Software, we check the reliability of the results from an 
algebraic calculation. 

 

II.  PROBLEM, MATHEMATICAL FORMULATION AND 

METHODOLOGY 

A. Problem 

A jeweler wishes to manufacture 3 types of jewels    
           The unit price of these jewels are respectively 350, 
200 and 400. The minimum composition of gold is 900 
whereas the maximum compositions of silver and copper are 
respectively 1000 and 1200 in the appropriate units. 

The following table indicates the minimum composition of 
each jewel: 
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TABLE I.  MINIMUM COMPOSITION OF EACH JEWEL 

 Gold Silver Copper 

A 1 1 3 

B 2 3 2 

C 3 2 1 

 

Determine the quantities of 3 Jewels to manufacture so that 
the total cost is maximum while respecting the data 
compositions. 

B. Mathematical formulation 

The mathematical formulation of the above problem is one 
of the followings LPP, where   ,    and    are the numbers of 
A, B and C manufactured jewels, respectively: 
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C. Methodology 

For the system “(1)”, introducing surplus, artificial and 
slack variables we get k! differents  systems, where, 

k!= number of surplus variables + number of artificial 
variables + number of slack variable. 

Here, k equals to 4 and we have 24 different systems (24 
Si, i =1, …, 24).  

The 4 permutations give us 4 cases: 

Case 1:   

In this case, the surplus variable is   . It follows that the 
initial basis will not contain that variable. 

{
  
 

  
 
                                  

         
          

                     
                   
                  
                           

           (S1) 

For “(S1)”, the variation of slack variables position leads to 

{
  
 

  
 
                                  

         
          

                     
                   
                  
                           

          (S2) 

For “(S1)”, the first variation of artificial variables position 
gives  

{
  
 

  
 
                                  

         
          

                     
                   
                  
                           

          (S3) 

For “(S3)”, the variation of slack variables position leads to 

{
  
 

  
 
                                  

            
          

                     
                   
                  
                           

          (S4) 

For “(S1)”, the second variation of artificial variables 
position gives 

{
  
 

  
 
                                  

            
          

                                         
                   
                  
                           

           (S5) 

For “(S5)”, the variation of slack variables position leads to 
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{
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Case 2: 

In this case, the surplus variable is   . It follows that the 
initial basis will not contain that variable. 

{
  
 

  
 
                                   

           
          

                     
                   
                  
                           

          (S7) 

For “(S7)”, the variation of slack variables position leads to 

{
  
 

  
 
                                   

           
          

                     
                   
                  
                           

          (S8) 

For “(S7)”, the first variation of artificial variables position 
gives 

{
  
 

  
 
                                   

           
          

                     
                   
                  
                         

          (S9) 

For “(S9)”, the variation of slack variables position 
variables leads to 

{
  
 

  
 
                                   

           
          

                     
                   
                  
                           

        (S10) 

For “(S7)”, the second variation of artificial variables 
position gives  

{
  
 

  
 
                                   

           
          

                     
                   
                  
                           

        (S11) 

For “(S11)”, the variation of slack variables position leads 
to 

{
  
 

  
 
                                   

           
          

                     
                   
                  
                           

       (S12) 

Case 3:   

In this case, the surplus variable is   . It follows that the     
initial basis will not contain that variable 

{
  
 

  
 
                                   

           
          

                     
                   
                  
                           

        (S13) 

For “(S13)”, the variation of slack variables position leads    
to 

{
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For “(S13)”, the first variation of artificial variables 
position gives 

{
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For “(S15)”, the variation of slack variables position leads 
to 
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{
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For “(S13)”, the second variation of artificial variables 
position gives 

{
  
 

  
 
                                   

           
          

                     
                   
                  
                           

        (S17) 

For “(S17)”, the variation of slack variables position leads 
to 

{
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Case 4: 

In this case, the surplus variable is   . It follows that the     
initial basis will not contain that variable. 

{
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For “(S19)”, the variation of slack variables position leads 
to 

{
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. For “(S19)”, the first variation of artificial variables 
position gives 

{
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For “(S19)”, the variation of slack variables position leads 
to 

{
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For “(S19)”, the second variation of artificial variables 
position gives 
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For “(S23)”, the variation of slack variables position leads 
to 

{
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For all these 24 systems, we have two methods: 

The first method [1,2,3] is developed with maximization 
and we get the optimality criterion  when    -     . The 

follow –up will be given by Max   . 

For the second  method,  the optimality criterion is given by 

 ̂     (                  )        ̂     (Minimization 
case), where  

 ̂      ( 
 )  A.                                                              (6) 

C is the cost vector,         matrix relating to the basic 
variables,     the cost vector related to the basis B and A is a 
matrix of order m. n. 

If the optimality criterion is no t reached, we  calculate 

    {
  

   
       } = 

  

   
 (finite)                                            (7) 
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Where       (  )     ,     the variable to be removed 

from the basis  and    the sth column of A,    is  given by the 
formula  

  = (  )  b (b is the second member of the constraints 

equations). 

The formula “(7)”, is used for the maximization and the 
minimization. 

 

III. RESULTS  

   We resolve “(S1)”, using the two methods and we make a 
comparison. 

A. First method 

{
  
 

  
 
                                  

            
          

                     
                   
                  
                           

  

1) Phase I 
In this phase we assign the cost -1 to the artificial variable 

   and zero to those other variables. We get 

{
 
 

 
 

          
          

                     
                   
                  
                           

  

 

TABLE II.  STARTING TABLE 

                             

   -1 900 1 2 3PE -1 1 0 0 

   0 1000 1 3 2 0 0 1 0 

   0 1200 3 2 0 0 0 0 1 

  -    -900 -1 -2 -3 1 0 0 0 

 

PE is  pivot element. Variable    is introduced  and     is 
removed from the basis. 

 

TABLE III.   

                             

   0 300 
 

 
 

 

 
 1  

 

 
 1 0 0 

   0 400 
 

 
 

 

 
 0 

 

 
  

 

 
 1 0 

   0 1200 3 2 0 0 0 0 1 

  -    0 0 0 0 0 1 0 0 

Since all   -      and Max. Z* = 0 we get an optimal 

solution. This gives a basic feasible solution to the original 
LPP which will be used in phase II to get optimal basic feasible 
solution. 

2) Phase II 
Here the actual costs are taken for the variables except the 

artificial variable which is assigned zero value. We now  use 
the following objective function :  

Max.Z=                                     

 

TABLE IV.   

                          

   400 300 
 

 
 

 

 
 1  

 

 
 0 0 

   0 400 
 

 
 

 

 
 0 

 

 
 1 0 

   0 1200 3PE 2 0 0 0 1 

  -    120000  
   

 
 

   

 
 0  

   

 
 0 0 

 

Variable    is introduced  and     is removed from the 
basis. 

 

TABLE V.   

                          

   400 
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PE 1  

 

 
 

   350 400 1 
 

 
 0 0 0 

 

 
 

  -    120000   
    

 
 0  

   

 
 0 

   

 
 

 

Variable    is introduced  and     is removed from the 
basis. 

 

TABLE VI.   

                          

   400 300   
 

 
 1   

 

 
  

 

 
 

   0 400   
  

 
     

 

 
  

 

 
 

   350 400 1 
 

 
 0 0 0 

 

 
 

  -    260000       0   200    

 

Since all   -       an optimum basic feasible solution is 

obtained. 
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Hence the optimum solution is:  

          = 0,   = 300 and Max.Z= 260 000. 

B. Second method 

We take  the basis 

B =(
 
 
 
 
 
 
 
 
 
 
 
). 

Using the formula “(6)”, we get  

 ̂  (              ) and the condition   ̂       is not  
reached. By the formula “(7)”, the new basis is given by the 
columns corresponding to               in matrix A. We get  

 ̂  (              ). 

After getting pivot element, we use the following formula 
for the transformations [13, 15]: 

   (          )      (element of    
 

  
       ) ,               (8) 

where         is  the pivot row.  

We can calculate the ratio:  

Ratio= 
                       

        (         )                
                                 (9) 

and we take the minimum. This gives us the variable to remove   
from the basis. This is equivalent to the formula “(7)”. 

 

TABLE VII.  PHASE I 

                      b 

   1 2 3PE -1 1 0 0 900 

   1 3 2 0 0 1 0 1000 

   3 2 0 0 0 0 1 1200 

 ̂ 1 2 3 -1 0 0 0  
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 1 0 400 

   3 2 0 0 0 0 1 1200 

 ̂ 0 0 0 0 -1 0 0  

 

Since all  ̂      and Max. Z* = 0 we get an optimal 
solution. This gives a basic feasible solution to the original 
LPP which will be used in phase II to get optimal basic feasible 
solution. 

Here the actual costs are taken for the variables except the 
artificial variable which is assigned zero value. We now  use 
the following objective function: 

Max.Z=                                   . 

 

 

 

TABLE VIII.  PHASE II 

                   b 
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   3PE 2 0 0 0 1 1200 

 ̂ 
   

 
  

   

 
 0 

   

 
 0 0  

     
 

 
 1  

 

 
 0  

 

 
 

   

 
 

   
 

  
  

 
   

 

 
PE 1  

 

 
 

   

 
 

   1 
 

 
 0 0 0 

 

 
 400 

 ̂    
    

 
 0 

   

 
 0  

   

 
  

     
 

 
 1 

  
 

 

 
  

 

 
 300 

     
  

 
     

 

 
  

 

 
 400 

   1 
 

 
 0 0 0 

 

 
 400 

 ̂        0   -200      

 

Since all   -       an optimum basic feasible solution is 

obtained. 

Hence the optimum solution is  

          = 0,   = 300  and  Max.Z= 260 000. 

C.  Illustration Using TORA Software 

With TORA software, the solution is obtained after the 
iteration 5: 

 

 

Figure 1.  Phase I (Iteration 1& 2) 
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Figure 2.  Phase II (Iteration 3& 4) 

 

 

Figure 3.  Phase II (Iteration 5) 

 

1) Illustration  for “(2)” 
 

 

Figure 4.  Phase I (Iteration 1&2) and Phase 2 (Iteration 3) 

 

 

Figure 5.  Phase 2 (Iteration 4 &5) 

 

2) Illustration  for “(3)”. 
 

 

Figure 6.  Phase I (Iteration 1&2) and Phase 2 (Iteration 3) 
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Figure 7.  Phase 2 (Iteration 4 &5) 

 

3) Illustration  for “(4)”. 
 

 

Figure 8.  Phase I (Iteration 1&2) and Phase 2 (Iteration 3) 

 

 

Figure 9.  Phase 2 (Iteration 4 &5) 

4) Illustration  for “(5)”. 

 

 

Figure 10.  Phase I (Iteration 1&2) and Phase 2 (Iteration 3) 

 

 

Figure 11.  Phase 2 (Iteration 4 &5) 

 

IV. CONCLUSION AND FUTURE WORK 

In this paper, a new form of TPUSM is proposed and it is 
very easy to understand and provides better result in 
comparison to the existing method available in the literature. It 
is general because is used for maximizing objective function 
and minimizing objective problem without any transformation. 
The TORA software is the suitable tool for all our 
verifications. 
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