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Abstract- Emotion recognition has become a very controversial 
issue in Brain Computer interfaces (BCI). Moreover, numerous 
studies have been conducted in order to recognize emotions. 
Also, there are several important definitions and theories about 
human emotions. Considering low cost, high time and spatial 
resolution, EEG has become very common and is widely-used 
in most BCI applications and studies. Due to EEG’s 
nonlinearity and complexity, most traditional methods fail to 
describe EEG while emotion elicitation. In other words, new 
approaches based on EEG phase space have recently gained a 
great deal of attention. In this paper we try to cover important 
topics related to the field of emotion recognition. We review 
several studies which are based on analyzing 
electroencephalogram (EEG) signals as a biological marker in 
emotion changes. First, we state some theories and basic 
definitions related to emotions. Then some important steps of 
an emotion recognition system are described. After that, most 
popular databases are explained. Finally, recent and most 
important studies are reviewed. 

Keywords- Emotion Recognition, Affect Assessment, Human 

Feelings, Nonlinear Analysis, Arousal, Valence‎  

 

I. EMOTIONS; DEFINITIONS, THEORIES AND MODELS 

Everyone knows original and basic emotions such as 
happiness, fear, anger, disgust, sadness and surprise. But 
neuroscientists and researchers have no consensus about the 
nature of emotions. There are two opinions about emotions: 
one approach considers emotions as general states of 
individuals and the other one knows emotions as physiological 
interactions [1]. Imagine a person driving a car while another 
car approaches and causes him to deviate from the road. At 
first that individual probably experiences fear and anger. 
According to the first view, fear comes from the inference that 
one might be in anger and that anger is because of the driver 
who has just put him in danger. Thagard [1], Oately [2] and 
Nussbaum [3] believe in the first approach. Oately 
demonstrated how original emotions have a strong relation 
with executing goals. In other words, people become happy 
while approaching their goals and sad when they fail. 
Therefore, we can consider emotions a general representation 
of our problems [1]. In contrast to the first view, the second 
approach emphasis on physical and physiological interactions. 
When someone causes an individual driving a car to deviate off 
the road, their heart rate, blood pressure and respiration rate 

increase.  Feelings (like fear or anger, etc.) originate from the 
brain’s responses to these physiological changes and not from 
the interpretation of the situation. James introduced this 
approach for the first time in 1884 [4].  

Researchers mostly consider two models for emotions in 
order to describe and classify them. There are two major views 
about emotion models; discrete and continuous. In the first 
model, emotions are considered different and separate 
phenomena. In contrast to the first view, the second model 
suggests that emotions are better described by some continuous 
variables such as arousal, valence, liking, dominance, etc. Both 
views are explained below. Psychologically speaking, in terms 
of emotion classification and based on the discrete model there 
are two basic theories: Plutchik’s theory and Ekman’s theory. 
The first theory classifies emotions into two different 
categories: basic emotions and secondary ones. These emotions 
are as follows: anticipation, joy, trust, sadness, fear, surprise, 
anger, disgust. Secondary emotions come from a combination 
of these elementary feelings. These emotions are love, 
optimism, aggressiveness, submission, contempt, awe, remorse 
and disapproval. Ekman’s theory is known as a discrete model. 
He introduced six basic emotions: fear, sadness, happiness, 
surprise, disgust, anger [5]. After that, the number of these 
emotions increased to fifteen. James and Lange in the 
nineteenth century introduced another theory, James-Lange 
theorem [6]. In this theory environmental variations cause 
physiological changes in our autonomous nervous system and 
consequently cause different emotions. Besides the discrete 
model of emotions, there is the continuous model which Lang 
proposed and is also called valence-arousal model. Based on 
this model, valence and arousal values are assigned to each 
emotion. In other words, in this model emotions are a 
continuous spectrum of valence and arousal values and 
generally emotions are plotted in a 2D coordination called 
valence-arousal plane. 

 

II. EMOTION RECOGNITION SYSTEMS AND DATABASES 

In this section, a general emotion recognition system is 
explained and different aspects are taken into account. Also 
there are several rich databases in terms of emotion recognition 
which have been used in numerous studies. There are some 
important steps in an emotion recognition study. Figure 1 
shows the emotion classification process. Physiological 
changes cause emotions. Therefore, researchers analyze signals 
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and images related to these physiological changes in order to 
recognize feelings and classify emotions. However, 
physiological signals introduce some problems like noise, 
artifacts, etc. Another problem is that we cannot visually 
recognize emotions from physiological signals and 

computerized processes are required [7-10]. Also, there are 
other factors which affect emotions, such as sex, age and race. 
Usually, researchers consider these parameters while studying 
emotions.

 

 

 

Figure 1.  Important steps in a general emotion recognition syste 

 

There are also other important factors in emotion 
recognition systems such as biological records, emotion 
stimulation, emotion models, number of participants and 
elicited emotions, online or offline recognition, classification 
methods and participants’ recorded information. Emotion 
status is reflected by physiological changes, which is why 
biological signals and images are recorded in order to 
recognize emotions. Some biological signals which have been 
used in recent studies are Electrocardiogram (ECG), EEG, 
Galvanic Skin Response (GSR), Electromyogram (EMG), 
respiration rate and so on. EEG signals due to their simplicity 
to analyze and good time and spatial resolution have become 
common and useful in most BCI applications such as emotion 
recognition. Also, EEG recording systems are cheap and 
accessible. Previous studies show that by recording and 
processing EEG signals we can achieve very good results in 
terms of emotion classification. So a decision was made to 
explain and review some previous studies related to emotion 
classification through EEG signals. The way emotions are 
evoked plays an important role in emotion recognition systems. 
Some believe that video clips can stimulate human emotions 
the best while others find music or memories the most effective 
way. What is clear is that the stronger the stimulation is the 
richer the database will be. By using strong stimulation, 
emotion recognition is more likely to be performed with better 
results and higher accuracy. There are some types of 
stimulation like pictures [11-20], video clips [21-29], music 
[30-33], memories [34], self-induction [35-37] and games [38]. 
Recorded signals and information are processed through 
feature extraction and then classification methods. More 
information is provided in next section. In some studies, 
emotion recognition on the spot is really important such as 
monitoring patients while taking medicine. So online methods 
are of importance in those applications. For example, in [37], 

an effective, general and complete classification method for 
EEG signals was introduced. On the other hand, offline 
methods are more common and accurate in comparison with 
online studies. For example, Zhang and Lee in [40], recognized 
positive and negative emotions using neuro fuzzy method 
offline. Another problem in emotion recognition studies is the 
number of elicited emotions and the emotion model. Some 
studies, according to discrete model, consider a specific 
number of emotions and others according to the valence-
arousal model suppose more emotions. For example, Koelstra 
et al. [23], Koelstra and Patras in [24], Hidalgo-Munoz et al. in 
[16], studied emotions according to the valence-arousal model. 
There are some public emotion databases which can be used by 
researchers for free. Table 1 represents most common and 
popular databases related to emotion recognition. Recorded 
signals and information, number of participants and stimulated 
emotions, emotion models and emotion elicitation are provided 
in this table. 

 

III. PREVIOUS EMOTION RECOGNITION STUDIES 

Emotion recognition has a wide usage in several fields in 
terms of normal and abnormal cases. Researchers have 
managed to detect and diagnose some mental disorders like 
depression, schizophrenia, etc. through emotions. Also 
processing signals leads to emotion recognition in normal 
cases. Since the number of studies in this field is quite large, 
we decided to explain and report studies in a comparative table. 
Table 2 describes recent studies including normal and 
abnormal cases. As mentioned above, due to some advantages 
emotion recognition based on EEG signals has become very 
controversial in BCI and other fields. So we limited Table 2 to 
emotion recognition studies through EEG signals. 

 

 

Emotion Recognition 

Emotion Elicitation 

(Videos, Photos, 

Music, etc.) 

Participants’ 

information 

(Age, Sex, EQ, IQ, 

Career, etc.) 

Recorded Data 
(EEG, ECG, EMG, 

GSR, etc.) 

Emotion Models 
(Discrete, 

Continuous) 

Emotion 
Classification 

(Features, Classifiers, 

Models, etc.) 
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TABLE I.  EMOTION RECOGNITION DATABASES 

Ref Database Emotion Stimulation Participants Recorded Signals Emotion Model 

[23] DEAP Video Clips 32 
32 EEGs, 4 EMGs, 4 EOGs, 1 GSR, 1 

Plethysmograph, 1 Temperature 
Arousal-Valence Plane 

[53] MAHNOB 
Video Clips and 

Pictures 
30 

‎16 EEGs, 3 ECGs, 2 GSRs, 1 ‎Heart Rate, 1 
Temperature 

Happiness, Sadness, Disgust, Amusement, 

Fear, Surprise, Anxiety, Anger, Neutral 

[54] DREAMER Video Clips 23 14 EEGs, 1 ECG Arousal, Valence, Dominance 

[55] DECAF Video Clips 30 MEG, ECG, EOG, EMG, NIR Facial Videos Arousal-Valence Plane 

[56] SEED
 

Video Clips 15 15 EEGs Positive, Neutral and Negative 

[57] ASCERTAIN Video Clips 58 EEG, ECG, GSR and Visual Arousal, Valence 

[58] AMIGOS Video Clips 40 
Audio, Visual, Depth, EEG, GSR & 

ECG 
Arousal, Valence 

 

TABLE II.  RECENT EMOTION RECOGNITION AND EVALUATION STUDIES FROM EEGS [59] 

Ref Emotions Stimulation Recorded signals Method Results 

[17] 

4 emotions from 

valence arousal 

model 

Pictures (IAPS 

database) 
EEGs 

ICA, modified kernel density estimation 

(KDE), artificial neural networks 

Improvement in recognition using modified 

KDE 

[18] 
Negative and 

positive 

pictures (IAPS 

database) 
EEGs from 26 women 

Amplitude and latency of ERPs, 

Neural networks, logistic regression, naïve 

Bayes, linear discriminant analysis 

P300 and P200 from parietal and occipital 

regions play role in emotion recognition 

[19] 
valence arousal 

emotions 

Pictures (IAPS 

database) 
EEGs from 26 subjects 

Clustering and classification by Echo state 

networks (ESN) 

Echo state networks were better than classic 

networks 

[20] 
Negative, positive, 

neutral 

Pictures (Ekman 

emotion database) 

EEGs from 16 depressed 

patients and 14 normal 

individuals 

Sub band coherence, graph theory 

-Higher coherence of depressed patients at 

gamma frequency band 

-higher coherence of normal individual in 

negative stimulation compared to positive 

[25] 

happiness, anger, 

fear, sadness, disgust, 

surprise 

Video clips 
forehead EEGs, SC, BVP, 

RR from 25 individuals 

adaptive weighted linear model, KNN, 

SVM, 

EEG forehead signals are sufficient for 

emotion recognition 

[26] 
valence arousal 

emotions 
video clips 

EEGs from 32 individuals 

(DEAP database) 

Bispectrum analysis, LS-SVM, ANN 

(Linear and RBF kernels) 
Sub bands had better results than EEGs 

[27] 
valence arousal 

emotions 
video clips DEAP database 

minimum-Redundancy-Maximum-

Relevance (mRMR), SVM, genetic 
algorithm-SVM (GA-SVM) 

Preference of mRMR vs SVM and GA-SVM 

[30] 
Negative, neutral and 

positive 
video clips 

EEGs from 15 subjects 

(SEED database) 

domain adaptation, subspace alignment 

auto-encoder (SAAE) 
Effectiveness of SAAE in emotion recognition 

[29] 
valence arousal 

emotions 
video clips 

EEGs and face expression 

from 30 subjects 

(MAHNOB-HCI 

database) 

multimodal approach, Spectral power 

difference, discriminant spectral power, 

KNN, ANOVA, fusion 

Effectiveness of multimodal approach 

[37] disgust 

Self- induction 

(remembering 

unpleasant smell) 

EEGs from 10 men Wavelet transform, PCA, SVM 
right hemisphere and T8 play important role in 

emotion recognition 

[41] 
valence arousal 

emotions 
video clips 

EEG signals and 

peripheral signals (DEAP 

database) 

Spectral and time features, 

multiple-fusion-layer based ensemble 

classifier of stacked auto-encoder 

(MESAE) 

Preference of MESAE method vs classic 

methods 

[49] 
Anger, happiness, 

neutral 

Pictures (Ekman 

and Friesen’s 

collection) 

EEG signals from 46 

subjects 

event-related spectral perturbations, 

ANOVA 

-theta synchronization lead to increase in low 

depression patients following happiness 

stimulation 

-increase of theta synchronization due to anger 

elicitation in high depression patients 

[50] 

sad, disgust, fear, 

anger, happy and 

surprise 

Pictures (IAPS 

database), sounds 

(IADS
3
 database), 

video clips 

EEG signals from 57 

subjects 

wavelet packet transform, Hurst exponent, 

K-nearest Neighbour (KNN), Probabilistic 

Neural Network (PNN) 

-Beta as the most discriminative frequency 

band 

-sad emotion had higher accuracy (82.32%) 

[51] 
valence arousal 

emotions 
Video clips 

EEG signals and 

peripheral signals              

(DEAP database) 

reinforcement online learning (ROL), 

support vector regression (SVR), least 

square regression (LS) 

Reduced learning time for Least square 

reinforcement learning and support vector 

reinforcement learning methods 

[52] Positive and negative 
Pictures (GAPED 

database) 

EEG signals from 12 

subjects 

Power Spectral Density (PSD), Signal 

Power (SP) and Common Spatial Pattern 

(CSP), Linear Discrimination Analysis 

(LDA) 

Higher accuracy for finding better electrode 

arrangement 
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IV. CONCLUSION 

Emotions, which are subjective activities pertaining to brain 
physiology, affect substantial processes such as memory, 
concentration and etc. Emotions play a crucial role in human 
relations and can be expressed by either verbal indication such 
as emotional terms and words or non-verbal cues like facial 
expressions and body language [61]. So, this means that 
emotion recognition as a decoder of these cues is of 
importance. During recent years, emotion classification has 
been receiving a great deal of attention from numerous 
researchers in different fields. Thanks to emotion recognition 
systems, physicians and psychologists are now able to diagnose 
and treat people’s mental disorders like depression, autism and 
etc. Many scientists have tried to design a precise and fast 
emotion recognition system employing biological signals with 
the aim of controlling robots or recognizing emotions online. 
Emotion states are key to designing video games and e-
learning [59]. A lot of studies have been conducted in order to 
help researchers to distinguish the real feelings of a person. 
Almost all people suffering from mental and neurological 
disorders like Autism, Parkinson and depression have trouble 
expressing their emotions. Emotion estimation would provide 
computers and robots with the possibility of interaction with 
human beings in a better way. So by classifying emotions 
computers are more likely to understand humans’ feelings [63-
67]. These are just some interesting aspects of emotion 
recognition. Although emotions play a significant role in 
people's day to day life, findings about human emotion 
detection is still limited and doubtful. For example, many 
Human-Machine interaction systems do not have the ability to 
recognize and translate the human emotional information. In 
other words, they cannot recognize human emotion states and 
cannot use this complex though rich information. The purpose 
of computation for recognizing human emotion is filling this 
lack with detecting emotional cues that occur during human-
computer interaction [61]. Also, there is no clear definition for 
feelings and different types of emotions exist [68]. There are 
numerous studies, models and theories but in most studies it 
has been claimed that emotions and human feelings are 
subjective and difficult to understand and classify. It suggests 
that there is a lot to know about human feelings. Based on what 
was mentioned, we can easily conclude that emotion 
classification is important in our world. This motivated us to 
conduct the current study with the aim of understanding more 
about emotions.  

In psychology various theories and models are suggested to 
indicate emotions. Based on the previous studies, there are two 
major models to represent emotions: discrete model and 
dimensional model. The first one states that there are some 
universal basic emotions with unique physiological 
characteristics, though their number and type vary from one 
theory to another [69, 70]. The most popular example of the 
discrete model is the classification of emotions into six main 
emotions: anger, disgust, fear, happiness, sadness, and surprise. 
This is also agreed by cross-cultural studies such as [72]. The 
disadvantage of the discrete view is that this model cannot 
distinguish the scope of emotions which are expressed in 
natural communication [61]. In contrast, in the dimensional 
theory, emotions are described in terms of dimensions. These 

dimensions include evaluation, activation, control, power, etc. 
Evaluation and activation are the two main dimensions to 
describe the principal facets of emotion. The evaluation 
dimension (valence) measures human feeling from pleasant to 
unpleasant, while the activation dimension (arousal) runs from 
active to passive, and measures the likeliness of the human 
taking action under the emotional state. Dimensional model 
indicates emotions by at least two factors: arousal 
(calm/exciting) and valence (positive/negative) which result in 
the arousal-valence plane. Considering the dimensional model, 
there are two dimensions to indicate feelings which results in 
the arousal-valence plane. Russell in [71] proposed emotion 
distribution in these two dimensions. The first quadrant (high 
arousal-high valence or HAHV) consists of happiness, 
pleasure, excitement, and satisfaction; the second (high 
arousal-low valence or HALV) consists of anger, disgust, 
hostility, and fear; the third quadrant (low arousal-low valence 
or LALV) contains sadness, boredom, shame, and depression; 
and the fourth (low arousal-high valence or LAHV) consists of 
relaxation, contentment, hope, and interest. The advantage of 
dimensional representation is that it helps out researchers to 
label the range of emotions which means that emotions can be 
represented by arousal and valence quantitative values in the 
dimensional model [69-74]. Figure 2 demonstrates the 
dimensional or arousal-valence based model. Some major 
emotions are shown in the corresponding quadrants. A lot of 
studies have used the dimensional perspective as it can 
describe emotions better than the other models. 

 

 

Figure 2.  Distribution of emotions in the dimensional model [70] 

 

Researchers have come to a conclusion that emotions are 
not exactly what arise. This means that there is a boundary 
between what arises and what is felt by individuals. In other 
words, there are two fundamental perspectives of emotions 
which are called the outer and inner aspects. Changes in the 



International Journal of Science and Engineering Investigations, Volume 7, Issue 78, July 2018 66 

www.IJSEI.com            Paper ID: 77818-10 ISSN: 2251-8843 

voice or body gesture are good examples for the outer aspect of 
feelings. While activities in our physiological systems such as 
brain are considered the emotional inner aspect [61]. In recent 
years, most studies have focused on analysis of the outer aspect 
like voice or facial expression to detect emotional states, 
however these ways did not give enough information to the 
scientists about human feelings. So they decided to concentrate 
on the inner aspect i.e. physiological activities. Biological 
signals which are a very picture of physiological activities 
include emotional information that can be used to assess 
emotions, but less attention has been paid to them [75-78]. We 
can distinguish emotions through biological signals such as 
EEG, Electrocardiogram (ECG), Electromyogram (EMG), 
body temperature and etc. These signals can be considered 
information sources whereby we can classify emotions. Among 
these sources EEG has very high spatial and temporal 
resolution. In addition EEG signals are easily available and 
price effective. As it was mentioned before, several studies and 
databases have recorded and used EEGs in order to classify 
emotions. Results show that EEG can simply reflect emotional 
changes. High classification accuracy was achieved by 
previous works in this field. There are also reliable databases 
with appropriate number of samples of EEG recordings in 
different emotional statues. This shows the importance and 
efficiency of studying and analyzing EEG in emotion 
recognition. 

Most emotion assessment methods consist of three main 
steps including the biological signal which is processed, 
extracted features and the classification model. Extracted 
feature may come from traditional approaches or modern ones 
which are more related to nonlinear analysis. We can see that 
both traditional and modern processing approaches have been 
employed to classify emotions. But common traditional 
methods which focus on time domain statics, frequency or 
frequency-scale domain are mostly useful for analyzing linear 
signals with specific mathematical characteristics such as 
linear, stationary and Gaussian distributed [68]. However, it is 
obvious that biological systems such as brain are inherently 
complex, non-Gaussian, nonlinear, and non- stationary [79]. 
That is the reason why nonlinear analysis has gained a lot of 
attention as a novel methodology over the past years. Nonlinear 
analysis makes it possible to extract more meaningful 
information and features from the recordings of brain activity 
[80]. Recent theories of complex systems and nonlinear 
dynamics have suggested strategies where the focus shifts from 
the traditional methods such as simple power spectra to the 
study of the pattern in the fluctuations of physiological signals 
using nonlinear methods [79]. Although phase space of a 
complex and nonlinear signal is estimated in most real world 
applications, it is the most practical, efficient tool to process 
such signals. Signal processing through trajectory analysis in 
the phase space results in a better understanding of the 
dynamics of underlying signals. Trajectory analysis provides us 
with valuable information about the attractor and signal 
behavior. Several studies have been carried out to propose 
some quantifiers like approximate entropy, sample entropy, 
correlation dimension, fractal dimension, lyapunov exponents 
and recurrence quantification analysis (RQA) [80-86]. All of 
these features quantify major properties of trajectories and also 

the attractors in a phase space [87]. Based on what was 
mentioned, nonlinear analysis can better describe changes and 
characteristics of complex signals like EEG in practical and 
real world applications such as emotion recognition. Since this 
kind of processing has resulted in higher accuracy and more 
valuable information about human feelings in recent years, it is 
suggested that researchers try to introduce new methods in this 
field. 

In this paper, we reviewed several emotion recognition 
studies from EEG signals. First, we stated some emotion 
approaches and theories. Then we described different 
components of emotion recognition systems: different kinds of 
biologic measurements (EEG, ECG, etc.) offline vs online 
recognition systems, different types of emotion stimulation, 
and the specific emotion models which have been used in 
studies (valence-arousal model and discrete model). Although 
numerous studies have used audio or visual elicitation, 
researchers have come for the conclusion that multi-modal 
elicitation (audio–visual stimuli) is the most effective elicitor 
comparing to the other modalities [60]. That is why most 
recent studies have employed video clips in their experiments. 
Since EEG has become more and more common in emotion 
recognition applications in recent years, our main focus was on 
the subject of emotion recognition through EEG signals. So 
different papers and studies were reviewed in order to cover 
this issue. Based on what was mentioned, nonlinear analysis 
plays a crucial role in EEG-based emotion classification 
systems. Higher accuracy has been achieved by representing 
phase space of EEG. Also valuable information about brain 
function and interactions between brain lobes in emotion 
elicitation has been obtained by these studies. This paper 
suggests researchers employ more nonlinear methods to study 
and know emotions better. Attempts were also made to support 
recent, valid and reliable studies for young researchers who are 
interested in this field.   
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