

1

International Journal of

Science and Engineering Investigations vol. 7, issue 80, September 2018

ISSN: 2251-8843

Comparison of ES and GA Applied to Neuroevolution of

Autoencoders

Hidehiko Okada

Faculty of Information Science and Engineering, Kyoto Sangyo University
(hidehiko@cc.kyoto-su.ac.jp)

Abstract- In this paper, the author compares two evolutionary
algorithms, an evolution strategy (ES) and a genetic algorithm
(GA), for evolutionary training of autoencoders. An
autoencoder is a component of a deep neural network known as
a stacked autoencoder. Optimization of neural networks by
means of evolutionary algorithms is called neuroevolution.
Weights and biases in an autoencoder are optimized by
evolutionary algorithms so that the autoencoder can precisely
reproduce its input data. The author previously reported an
experimental result by a GA [1]. This paper reports an
experimental result by an ES, and compares it with the
previously reported one to investigate which is better and why.
The same dataset of handwritten digits is used in these two
experiments. Results show that the ES evolves autoencoders
better than the GA does. Because ESs are known as better at
fine-tuning solutions in the later generations, the result
indicates that evolutionary algorithms which are better at fine-
grained search in the later phase of their optimization process
suit more for neuroevolution.

Keywords- Neural Network, Evolutionary Algorithm,

Optimization

I. INTRODUCTION

Deep neural networks and their learning algorithms have
been actively researched recently [2-15]. A stacked
autoencoder is a kind of the deep neural network, where an
autoencoder is a kind of layered feed forward neural networks
[2,8,9]. An autoencoder can be trained by the well-known back
propagation (BP) algorithm [16], but the training of neural
networks by the BP algorithm are likely to get stuck in an
undesirable local minimum because the algorithm is based on a
gradient decent method. Besides, several methods are proposed
for training neural networks by using evolutionary algorithms,
known as neuroevolution and evolutionary neural networks
[17,18]. An advantage of evolutionary algorithms over the BP
in training neural networks is that evolutionary algorithms can
globally search solutions well and thus the trained neural
networks are less likely to get stuck in an undesirable local
minimum [19-24]. Therefore, we can expect that evolutionary
algorithms contribute well to the training of autoencoders (and
thus stacked autoencoders).

The author previously reported an experimental result by
the GA [1]. Several kinds of evolutionary algorithms other than

GAs can also be applied to the training, and it is known as the
“no free lunch” theorem that no single search method is able to
find a better solution than any other method does [25]. Thus,
various evolutionary methods should be compared for
investigating which method suits better and why. As an
alternative to the GA, the author adopts an evolution strategy
(ES) [26] in this paper. This paper reports an experimental
result by the ES, and compares it with the previously reported
one. The same dataset of handwritten digits is used in these two
experiments.

II. AUTOENCODER

An autoencoder [2,8,9] is a layered feed forward neural
network where the number of units in the output layer is the
same as the number of units in the input layer. An autoencoder
is trained to output the same values as input values, in other
words, to reproduce their input data. Fig. 1 shows the topology
of an autoencoder adopted in this research. It has a single
hidden layer. Usually, the number of hidden units is smaller
than those of input (output) layer: dimensional input real
vectors are encoded (compressed) to () dimensional real
vectors between the input and hidden layers, and the
dimensional real vectors are decoded (decompressed) to the
dimensional real vectors between the hidden and output layers.
Note that the compression/decompression process is not
lossless but lossy so that the output values are not exactly be
the same as the input values. An autoencoder is trained to make
the error between the input and output values smaller.

Figure 1. Topology of an autoencoder in this research.

1 i… N…

1 j… M…

1 i… N…

Input

Hidden

Output

 International Journal of Science and Engineering Investigations, Volume 7, Issue 80, September 2018 2

www.IJSEI.com Paper ID: 78018-01 ISSN: 2251-8843

The feedforward calculations in this autoencoder are the
same as those in the traditional three layered perceptron. The
following equations (1)-(5) show the calculations.

Input layer:

 (1)

Hidden layer:

 ∑

 (2)

 (3)

Output layer:

 ∑

 (4)

 (5)

The symbols in (1)-(5) denote as follows:

 Input value to i-th input unit.

 Output value from i-th input unit.

 Input value to j-th hidden unit .

 Weight value from i-th input unit to j-th hidden unit.

 Bias value of j-th hidden unit.

 Output value from j-th hidden unit.

 Intput value to i-th output unit.

 Weight value from j-th hidden unit to i-th output unit.

 Bias value of i-th output unit.

 Output value from i-th output unit.

 is a unit activation function, where the sigmoidal one is
adopted in this research: .

Suppose the training data are dimensional real vectors
and the number of the data is .

 { } (6)

 (7)

In (6), is the set of training data. Each training data (in
(7)) is the -dimensional real vector. An autoencoder is trained

(i.e., values of

,

,

, and

 are optimized) so that

its output values (

) become closer to its

inputs (). In other words, the input value

is the target for the output value

. Thus, the error

between and

 becomes smaller by optimizing the

value of weights and biases.

∑

 (8)

∑

 (9)

 in (8) denotes the error for (), and
 in (9) denotes the average error over the entire training data
().

III. EVOLUTIONARY TRAINING BY EVOLUTION STRATEGY

Instead of the BP, an ES is adopted as the training method
of the autoencoder in this research. Both of the ES and the GA
are population-based stochastic search algorithms, whereas the
BP is a gradient-based single-point search algorithm. Because
of this difference, the ES and the GA are better than the BP in
searching solutions globally. It was reported that an
evolutionary algorithm could optimize neural networks better
than the BP did [19-24]. Optimization of neural networks by
means of evolutionary algorithms is called neuroevolution
[17,18]. There are two types of neuroevolution methods: (A)
the topology of a neural network (e.g., the number of hidden
layers, the number of units in each hidden layer) is fixed and
the weights are optimized, or (B) both of the topology and the
weights are optimized. In this paper, the author adopts the
former method. The autoencoder with the topology shown in
Fig.1 includes weights and
biases. Thus, the autoencoder includes
parameters in total. These parameters consist of a
 dimensional real vector and the vector is treated as the
genotype in an evolutionary algorithm. The phenotype in the
algorithm is the autoencoder in Fig.1. Evolutionary operators
are applied to the real values to optimize them
so that the error becomes smaller. The error value in (9) is
calculated with the training data and the output values of an
autoencoder.

The evolutionary process of the ES is as follows in this
paper:

Step1: Initialization

Step2: Evaluation

Step3: Conditional Termination

Step4: Selection

Step5: Perturbation

Step5: Goto Step2

In Step1, genotype values (real values) are
initialized with random numbers for each of individuals
where denotes the offspring population size. The value of
is given. The domain range of each genotype value should be
neither too large nor too small in this research because the
value is used as a weight or bias value in a neural network. In
Step2, fitness of new individuals (those with new genotype
values) are evaluated. In this research, the fitness is based on
the error in (9). An individual with a smaller error fits better
(and thus ranked higher). In Step3, the loop of evolutionary
process is finished if a given termination condition is met. In
this research, the loop is finished if the number of generations
reaches to a given limit. In Step4, the better individuals are
selected as parents in the next step, where denotes the parent
population size. The value of is also given. In this research,
the -ES is adopted. In Step5, offspring are produced
by using the parents; new genotype values for an offspring
are determined by applying the perturbation operator to the

 International Journal of Science and Engineering Investigations, Volume 7, Issue 80, September 2018 3

www.IJSEI.com Paper ID: 78018-01 ISSN: 2251-8843

genotype values of a parent. Let us denote a parent genotype
instance as { } and its offspring genotype
instance as { }, where . The
parent is randomly sampled from the parent population.
is determined by (10),

 (10)

where is a random number sampled from the normal
distribution.

IV. EXPERIMENT

This section reports an experimental study in which a
dataset of handwritten digits is used as training data. The
dataset is the Optical Recognition of Handwritten Digits Data
Set which is available in the UC Irvine Machine Learning
Repository. [27]

For each of the 10 digits (0,1,…,9), 20 data are randomly

extracted from the data file optdigits.tra. Thus, the total

number of the sampled data is 10 20 = 200. A half of the 200
data is used as the training data, and the remaining half is used
as the test data. Each data consists of 8 8 = 64 pixels and a
pixel is valued with either of 0,1,…,16 (0: white, 16: black). In
this experiment, the pixel values are normalized to a real value
within the interval [0.0, 1.0] by dividing the values by 16.0.
Figs. 2 and 3 visually show the training and test data
respectively.

Figure 2. Training data in this experiment.

Figure 3. Test data in this experiment.

The numbers of units in the input and output layers are 64,
because each training data consists of 64 values. The number
of hidden units is set to 10%, 20%, …, 90% of 64 (i.e., 7, 13,
…, 58). For example, an autoencoder with 32 (50% of 64)
hidden units has 64 32+32 64 weights and 32+64 biases in
total. Thus, the genotype is a 4192 dimensional real vector for
the “64 32 64” autoencoder.

Parameter values of the ES and the GA are experimentally
set as follows:

Both of ES and GA:

 Limit of genotype values: within the interval [-5.0, 5.0].

 Initial genotype values: randomly sampled from the

standard normal distribution.

 Limit of generations: 10,000.

ES:

 Population size: =10, =100.

GA[1]:

 Population size: 100.

 Number of elite individuals: 2.

 Tournament size for the selection of parents: 10.

 for the blend crossover: 0.5.

 Mutation probability: , where is the genotype

length.

The values of error in (9) were observed 10 times for
each setting. Fig. 4 and Table 1 show the best (smallest) and
the average of the 10 error values. Fig. 4 and Table 1 revealed
that, for both of ES and GA, the error was smaller as the
number of hidden units was larger. This is simply because an
autoencoder with more hidden units is usually able to fit to
training data more. Besides, the average errors were smaller for
ES than those for GA. Thus, the ES could train autoencoders
better than the GA could.

Figure 4. Ratio of hidden units and training errors.

If the trained autoencoders overfit to the training data (Fig.
2), the error on the training data becomes small but the error on
the test data (Fig. 3) becomes much larger. Table 2 shows the
error on the test data, where the test data are input to the trained

 International Journal of Science and Engineering Investigations, Volume 7, Issue 80, September 2018 4

www.IJSEI.com Paper ID: 78018-01 ISSN: 2251-8843

autoencoders with the smallest training error among the 10
runs. Figs. 5-8 show the outputs by the trained autoencoders.
These figures illustrate the errors on the training/test data. For
example, the difference between the two figures in Fig. 5
shows the error on the training data. These results are for the
“64 58 64” autoencoders. Table 2 reveals that the test errors
are larger than the training errors, but the differences are small.
Indeed, Figs. 6 and 8 reveal that the trained autoencoders
reconstruct the test input data well. Thus, both the ES and the
GA did not let the autoencoders overfit to the training data. In
addition, the test errors are also smaller for the ES as the
training errors are.

TABLE I. RATIO OF HIDDEN UNITS AND TRAINING ERRORS.

GA ES

Ratio average best average best

10% 18.27 18.20 13.80 13.10

20% 17.89 14.87 12.86 12.31

30% 17.78 12.18 11.63 11.38

40% 16.73 10.32 11.01 10.76

50% 17.92 10.90 10.34 9.99

60% 14.68 8.53 9.41 8.87

70% 17.02 8.44 8.74 8.50

80% 10.59 8.10 8.40 7.98

90% 12.38 8.00 7.90 7.33

If the trained autoencoders overfit to the training data (Fig.

2), the error on the training data becomes small but the error on
the test data (Fig. 3) becomes much larger. Table 2 shows the
error on the test data, where the test data are input to the trained
autoencoders with the smallest training error among the 10
runs. Figs. 5-8 show the outputs by the trained autoencoders.
These figures illustrate the errors on the training/test data. For
example, the difference between the two figures in Fig. 5
shows the error on the training data. These results are for the
“64 58 64” autoencoders. Table 2 reveals that the test errors
are larger than the training errors, but the differences are small.
Indeed, Figs. 6 and 8 reveal that the trained autoencoders
reconstruct the test input data well. Thus, both the ES and the
GA did not let the autoencoders overfit to the training data. In
addition, the test errors are also smaller for the ES as the
training errors are.

TABLE II. TRAINING ERRORS AND TEST ERRORS.

 Ratio 10% 50% 90%

GA_
Train 18.20 10.90 8.00

Test 18.61 12.40 9.30

ES_
Train 13.10 9.99 7.33

Test 14.34 10.99 8.07

Input (Fig. 2)

Output

Figure 5. Output from the best “64 58 64” autoencoder trained by GA.

Input (Fig. 3)

Output

Figure 6. Output from the same autoencoder as for Fig. 5.

These results reveals that the ES contributes better than the
GA to the evolutionary training of autoencoders in this
research. Because ESs are known as better at fine-tuning
solutions in the later generations, the result indicates that
evolutionary algorithms which are better at fine-grained search
in the later phase of their optimization process suit more for
neuroevolution. The author will evaluate such algorithms and
compare them to the ES.

V. CONCLUSION AND FUTURE WORK

The author adopted an ES and a GA to the evolutionary
training of an autoencoder. The experimental results with the
data of handwritten digits showed that the ES was better than
the GA. The results suggest that evolutionary algorithms which
are better at fine-grained search in the later phase of their
optimization process suit more for neuroevolution.
Evolutionary algorithms other than ESs and GAs have been
proposed. Swarm intelligence algorithms can also be adopted
to the stochastic training of deep neural networks, e.g., particle
swarm optimizations and artificial bee colony algorithms. The
author will evaluate, compare and improve the capabilities of
these evolutionary/swarm algorithms in the training of deep
neural networks.

 International Journal of Science and Engineering Investigations, Volume 7, Issue 80, September 2018 5

www.IJSEI.com Paper ID: 78018-01 ISSN: 2251-8843

REFERENCES

[1] Okada, H. (2017). Neuroevolution of autoencoders by genetic algorithm,
International Journal of Science and Engineering Investigations (IJSEI),
6(65), 127-131.

[2] Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the
dimensionality of data with neural networks. Science, 313(5786), 504-
507.

[3] Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning
algorithm for deep belief nets. Neural computation, 18(7), 1527-1554.

[4] Boureau, Y. L., & Cun, Y. L. (2008). Sparse feature learning for deep
belief networks. In Advances in neural information processing systems
(pp. 1185-1192).

[5] Sutskever, I., & Hinton, G. E. (2008). Deep, narrow sigmoid belief
networks are universal approximators. Neural Computation, 20(11),
2629-2636.

[6] Bengio, Y. (2009). Learning deep architectures for AI. Foundations and
trends in Machine Learning, 2(1), 1-127.

[7] Larochelle, H., Bengio, Y., Louradour, J., & Lamblin, P. (2009).
Exploring strategies for training deep neural networks. Journal of
Machine Learning Research, 10(Jan), 1-40.

[8] Tan, C. C., & Eswaran, C. (2010). Autoencoder neural networks: a
performance study based on image reconstruction, recognition and
compression. LAP Lambert Academic Publishing.

[9] Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P. A.
(2010). Stacked denoising autoencoders: Learning useful representations
in a deep network with a local denoising criterion. Journal of Machine
Learning Research, 11(Dec), 3371-3408.

[10] Salakhutdinov, R., & Hinton, G. (2012). An efficient learning procedure
for deep Boltzmann machines. Neural computation, 24(8), 1967-2006.

[11] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet
classification with deep convolutional neural networks. In Advances in
neural information processing systems (pp. 1097-1105).

[12] Bengio, Y., Courville, A., & Vincent, P. (2013). Representation
learning: A review and new perspectives. IEEE transactions on pattern
analysis and machine intelligence, 35(8), 1798-1828.

[13] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature,
521(7553), 436-444.

[14] Schmidhuber, J. (2015). Deep learning in neural networks: An overview.
Neural Networks, 61, 85-117.

[15] Zhang, S., Choromanska, A. E., & LeCun, Y. (2015). Deep learning
with elastic averaging SGD. In Advances in Neural Information
Processing Systems, 685-693.

[16] Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1986). Learning
representations by back-propagating errors. Nature, 323(6088), 533-538.

[17] Yao, X. (1999). Evolving artificial neural networks. Proceedings of the
IEEE, 87(9), 1423-1447.

[18] Floreano, D., Dürr, P., & Mattiussi, C. (2008). Neuroevolution: from
architectures to learning. Evolutionary Intelligence, 1(1), 47-62.

[19] Montana, D. J., & Davis, L. (1989). Training feedforward neural
networks using genetic algorithms. IJCAI, 89, 762-767.

[20] Sexton, R. S., Dorsey, R. E., & Johnson, J. D. (1998). Toward global
optimization of neural networks: a comparison of the genetic algorithm
and backpropagation. Decision Support Systems, 22(2), 171-185.

[21] Sexton, R. S., & Gupta, J. N. (2000). Comparative evaluation of genetic
algorithm and backpropagation for training neural networks. Information
Sciences, 129(1), 45-59.

[22] Örkcü, H. H., & Bal, H. (2011). Comparing performances of
backpropagation and genetic algorithms in the data classification. Expert
systems with applications, 38(4), 3703-3709.

[23] Joy, C. U. (2011). Comparing the Performance of backpropagation
algorithm and genetic algorithms in pattern recognition problems.
International Journal of Computer Information Systems, 2(5), 7-12.

[24] Che, Z. G., Chiang, T. A., & Che, Z. H. (2011). Feed-forward neural
networks training: a comparison between genetic algorithm and back-
propagation learning algorithm. International Journal of Innovative
Computing, Information and Control, 7(10), 5839-5850.

[25] Wolpert, D.H., & Macready, W.G. (1997). No free lunch theorems for
optimization. IEEE Transactions on Evolutionary Computation, 1(1),
67-82.

[26] Beyer, H-G., & Schwefel, H-P. (2002). Evolution strategies - a
comprehensive introduction, Natural Computing, 1(1) 3-52.

[27] https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwri
tten+Digits

Input (Fig. 2)

Output

Figure 7. Output from the best “64 58 64” autoencoder trained by ES.

Input (Fig. 3)

Output

Figure 8. Output from the same autoencoder as for Fig. 7.

	I. Introduction
	II. Autoencoder
	III. Evolutionary Training by Evolution Strategy
	IV. Experiment
	V. Conclusion and Future Work
	References

