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Abstract- In this paper, the author compares two evolutionary 
algorithms, an evolution strategy (ES) and a genetic algorithm 
(GA), for evolutionary training of autoencoders. An 
autoencoder is a component of a deep neural network known as 
a stacked autoencoder. Optimization of neural networks by 
means of evolutionary algorithms is called neuroevolution. 
Weights and biases in an autoencoder are optimized by 
evolutionary algorithms so that the autoencoder can precisely 
reproduce its input data. The author previously reported an 
experimental result by a GA [1]. This paper reports an 
experimental result by an ES, and compares it with the 
previously reported one to investigate which is better and why. 
The same dataset of handwritten digits is used in these two 
experiments. Results show that the ES evolves autoencoders 
better than the GA does. Because ESs are known as better at 
fine-tuning solutions in the later generations, the result 
indicates that evolutionary algorithms which are better at fine-
grained search in the later phase of their optimization process 
suit more for neuroevolution.  
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I. INTRODUCTION 

Deep neural networks and their learning algorithms have 
been actively researched recently [2-15]. A stacked 
autoencoder is a kind of the deep neural network, where an 
autoencoder is a kind of layered feed forward neural networks 
[2,8,9]. An autoencoder can be trained by the well-known back 
propagation (BP) algorithm [16], but the training of neural 
networks by the BP algorithm are likely to get stuck in an 
undesirable local minimum because the algorithm is based on a 
gradient decent method. Besides, several methods are proposed 
for training neural networks by using evolutionary algorithms, 
known as neuroevolution and evolutionary neural networks 
[17,18]. An advantage of evolutionary algorithms over the BP 
in training neural networks is that evolutionary algorithms can 
globally search solutions well and thus the trained neural 
networks are less likely to get stuck in an undesirable local 
minimum [19-24]. Therefore, we can expect that evolutionary 
algorithms contribute well to the training of autoencoders (and 
thus stacked autoencoders).  

The author previously reported an experimental result by 
the GA [1]. Several kinds of evolutionary algorithms other than 

GAs can also be applied to the training, and it is known as the 
“no free lunch” theorem that no single search method is able to 
find a better solution than any other method does [25].  Thus, 
various evolutionary methods should be compared for 
investigating which method suits better and why. As an 
alternative to the GA, the author adopts an evolution strategy 
(ES) [26] in this paper. This paper reports an experimental 
result by the ES, and compares it with the previously reported 
one. The same dataset of handwritten digits is used in these two 
experiments. 

 

II. AUTOENCODER 

An autoencoder [2,8,9] is a layered feed forward neural 
network where the number of units in the output layer is the 
same as the number of units in the input layer. An autoencoder 
is trained to output the same values as input values, in other 
words, to reproduce their input data. Fig. 1 shows the topology 
of an autoencoder adopted in this research. It has a single 
hidden layer. Usually, the number of hidden units is smaller 
than those of input (output) layer:   dimensional input real 
vectors are encoded (compressed) to  (  ) dimensional real 
vectors between the input and hidden layers, and the   
dimensional real vectors are decoded (decompressed) to the   
dimensional real vectors between the hidden and output layers. 
Note that the compression/decompression process is not 
lossless but lossy so that the output values are not exactly be 
the same as the input values. An autoencoder is trained to make 
the error between the input and output values smaller. 

 

 

Figure 1.  Topology of an autoencoder in this research. 
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The feedforward calculations in this autoencoder are the 
same as those in the traditional three layered perceptron. The 
following equations (1)-(5) show the calculations.  

Input layer:  
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Hidden layer: 
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Output layer: 
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The symbols in (1)-(5) denote as follows: 

   Input value to i-th input unit. 

    
   

 Output value from i-th input unit. 

   
   

 Input value to j-th hidden unit . 

    
   

 Weight value from i-th input unit to j-th hidden unit. 

  
   

 Bias value of j-th hidden unit. 

    
   

 Output value from j-th hidden unit. 

   
   

 Intput value to i-th output unit. 

    
   

 Weight value from j-th hidden unit to i-th output unit. 

  
   

 Bias value of i-th output unit. 

    
   

 Output value from i-th output unit. 
 

    is a unit activation function, where the sigmoidal one is 
adopted in this research:               . 

Suppose the training data are   dimensional real vectors 
and the number of the data is  . 

  {  }                        (6) 

                                   (7) 

In (6),   is the set of training data. Each training data (   in 
(7)) is the  -dimensional real vector. An autoencoder is trained 

(i.e., values of     
   

,   
   

,     
   

, and   
   

 are optimized) so that 

its output values (    
   

          ) become closer to its 

inputs (              ). In other words, the input value      

is the target for the output value     
   

. Thus, the error 

between      and     
   

 becomes smaller by optimizing the 

value of weights and biases. 
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   in (8) denotes the error for    (          ), and 
  in (9) denotes the average error over the entire training data   
(         ). 

 

III. EVOLUTIONARY TRAINING BY EVOLUTION STRATEGY 

Instead of the BP, an ES is adopted as the training method 
of the autoencoder in this research. Both of the ES and the GA 
are population-based stochastic search algorithms, whereas the 
BP is a gradient-based single-point search algorithm. Because 
of this difference, the ES and the GA are better than the BP in 
searching solutions globally. It was reported that an 
evolutionary algorithm could optimize neural networks better 
than the BP did [19-24]. Optimization of neural networks by 
means of evolutionary algorithms is called neuroevolution 
[17,18]. There are two types of neuroevolution methods: (A) 
the topology of a neural network (e.g., the number of hidden 
layers, the number of units in each hidden layer) is fixed and 
the weights are optimized, or (B) both of the topology and the 
weights are optimized. In this paper, the author adopts the 
former method. The autoencoder with the topology shown in 
Fig.1 includes              weights and     
biases. Thus, the autoencoder includes         
parameters in total. These parameters consist of a       
  dimensional real vector and the vector is treated as the 
genotype in an evolutionary algorithm. The phenotype in the 
algorithm is the autoencoder in Fig.1. Evolutionary operators 
are applied to the         real values to optimize them 
so that the error becomes smaller. The error value   in (9) is 
calculated with the training data and the output values of an 
autoencoder. 

The evolutionary process of the ES is as follows in this 
paper: 

Step1: Initialization 

Step2: Evaluation 

Step3: Conditional Termination 

Step4: Selection 

Step5: Perturbation 

Step5: Goto Step2 
 

In Step1, genotype values (        real values) are 
initialized with random numbers for each of   individuals 
where   denotes the offspring population size. The value of   
is given. The domain range of each genotype value should be 
neither too large nor too small in this research because the 
value is used as a weight or bias value in a neural network. In 
Step2, fitness of new individuals (those with new genotype 
values) are evaluated. In this research, the fitness is based on 
the error in (9). An individual with a smaller error fits better 
(and thus ranked higher). In Step3, the loop of evolutionary 
process is finished if a given termination condition is met. In 
this research, the loop is finished if the number of generations 
reaches to a given limit. In Step4, the better   individuals are 
selected as parents in the next step, where   denotes the parent 
population size. The value of   is also given. In this research, 
the      -ES is adopted. In Step5,   offspring are produced 
by using the   parents; new genotype values for an offspring 
are determined by applying the perturbation operator to the 
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genotype values of a parent. Let us denote a parent genotype 
instance as   {          }  and its offspring genotype 
instance as   {          }, where          . The 
parent   is randomly sampled from the   parent population.    
is determined by (10), 

                        (10) 

where   is a random number sampled from the normal 
distribution. 

 

IV. EXPERIMENT 

This section reports an experimental study in which a 
dataset of handwritten digits is used as training data. The 
dataset is the Optical Recognition of Handwritten Digits Data 
Set which is available in the UC Irvine Machine Learning 
Repository. [27] 

For each of the 10 digits (0,1,…,9), 20 data are randomly 

extracted from the data file optdigits.tra. Thus, the total 

number of the sampled data is 10   20 = 200. A half of the 200 
data is used as the training data, and the remaining half is used 
as the test data. Each data consists of 8   8 = 64 pixels and a 
pixel is valued with either of 0,1,…,16 (0: white, 16: black). In 
this experiment, the pixel values are normalized to a real value 
within the interval [0.0, 1.0] by dividing the values by 16.0. 
Figs. 2 and 3 visually show the training and test data 
respectively. 

 

 

Figure 2.  Training data in this experiment. 

 

 

Figure 3.  Test data in this experiment. 

The numbers of units in the input and output layers are 64, 
because each training data consists of 64 values. The number 
of hidden units is set to 10%, 20%, …, 90% of 64 (i.e., 7, 13, 
…, 58). For example, an autoencoder with 32 (50% of 64) 
hidden units has 64 32+32 64 weights and 32+64 biases in 
total. Thus, the genotype is a 4192 dimensional real vector for 
the “64 32 64” autoencoder.  

Parameter values of the ES and the GA are experimentally 
set as follows:  

Both of ES and GA: 

 Limit of genotype values: within the interval [-5.0, 5.0]. 

 Initial genotype values: randomly sampled from the 

standard normal distribution. 

 Limit of generations: 10,000. 

ES: 

 Population size:   =10,  =100. 

GA[1]: 

 Population size: 100. 

 Number of elite individuals: 2. 

 Tournament size for the selection of parents: 10. 

   for the blend crossover: 0.5. 

 Mutation probability:    , where   is the genotype 

length.   

The values of error   in (9) were observed 10 times for 
each setting. Fig. 4 and Table 1 show the best (smallest) and 
the average of the 10 error values. Fig. 4 and Table 1 revealed 
that, for both of ES and GA, the error was smaller as the 
number of hidden units was larger. This is simply because an 
autoencoder with more hidden units is usually able to fit to 
training data more. Besides, the average errors were smaller for 
ES than those for GA. Thus, the ES could train autoencoders 
better than the GA could. 

 

 

Figure 4.  Ratio of hidden units and training errors. 

 

If the trained autoencoders overfit to the training data (Fig. 
2), the error on the training data becomes small but the error on 
the test data (Fig. 3) becomes much larger. Table 2 shows the 
error on the test data, where the test data are input to the trained 
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autoencoders with the smallest training error among the 10 
runs. Figs. 5-8 show the outputs by the trained autoencoders. 
These figures illustrate the errors on the training/test data. For 
example, the difference between the two figures in Fig. 5 
shows the error on the training data. These results are for the 
“64 58 64” autoencoders. Table 2 reveals that the test errors 
are larger than the training errors, but the differences are small. 
Indeed, Figs. 6 and 8 reveal that the trained autoencoders 
reconstruct the test input data well. Thus, both the ES and the 
GA did not let the autoencoders overfit to the training data. In 
addition, the test errors are also smaller for the ES as the 
training errors are.  

 

TABLE I.  RATIO OF HIDDEN UNITS AND TRAINING ERRORS. 

 
GA ES 

Ratio average best average best 

10% 18.27 18.20 13.80 13.10 

20% 17.89 14.87 12.86 12.31 

30% 17.78 12.18 11.63 11.38 

40% 16.73 10.32 11.01 10.76 

50% 17.92 10.90 10.34 9.99 

60% 14.68 8.53 9.41 8.87 

70% 17.02 8.44 8.74 8.50 

80% 10.59 8.10 8.40 7.98 

90% 12.38 8.00 7.90 7.33 

 
If the trained autoencoders overfit to the training data (Fig. 

2), the error on the training data becomes small but the error on 
the test data (Fig. 3) becomes much larger. Table 2 shows the 
error on the test data, where the test data are input to the trained 
autoencoders with the smallest training error among the 10 
runs. Figs. 5-8 show the outputs by the trained autoencoders. 
These figures illustrate the errors on the training/test data. For 
example, the difference between the two figures in Fig. 5 
shows the error on the training data. These results are for the 
“64 58 64” autoencoders. Table 2 reveals that the test errors 
are larger than the training errors, but the differences are small. 
Indeed, Figs. 6 and 8 reveal that the trained autoencoders 
reconstruct the test input data well. Thus, both the ES and the 
GA did not let the autoencoders overfit to the training data. In 
addition, the test errors are also smaller for the ES as the 
training errors are. 

 

TABLE II.  TRAINING ERRORS AND TEST ERRORS. 

 Ratio 10% 50% 90% 

GA_ 
Train 18.20 10.90 8.00 

Test 18.61 12.40 9.30 

ES_ 
Train 13.10 9.99 7.33 

Test 14.34 10.99 8.07 

 

Input (Fig. 2) 

 

Output 

Figure 5.  Output from the best “64 58 64” autoencoder trained by GA. 

 

 

Input (Fig. 3) 

 

Output 

Figure 6.  Output from the same autoencoder as for Fig. 5. 

 

 

These results reveals that the ES contributes better than the 
GA to the evolutionary training of autoencoders in this 
research. Because ESs are known as better at fine-tuning 
solutions in the later generations, the result indicates that 
evolutionary algorithms which are better at fine-grained search 
in the later phase of their optimization process suit more for 
neuroevolution. The author will evaluate such algorithms and 
compare them to the ES. 

 

V. CONCLUSION AND FUTURE WORK 

The author adopted an ES and a GA to the evolutionary 
training of an autoencoder. The experimental results with the 
data of handwritten digits showed that the ES was better than 
the GA. The results suggest that evolutionary algorithms which 
are better at fine-grained search in the later phase of their 
optimization process suit more for neuroevolution. 
Evolutionary algorithms other than ESs and GAs have been 
proposed. Swarm intelligence algorithms can also be adopted 
to the stochastic training of deep neural networks, e.g., particle 
swarm optimizations and artificial bee colony algorithms. The 
author will evaluate, compare and improve the capabilities of 
these evolutionary/swarm algorithms in the training of deep 
neural networks.  
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Figure 7.  Output from the best “64 58 64” autoencoder trained by ES. 
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Figure 8.  Output from the same autoencoder as for Fig. 7. 
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