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Abstract- Differential Equations are important for modeling 
physical problems. In some cases, these equations are solved 
by some kind of numerical method. The most known numerical 
methods are dependent on an early choice of a computational 
mesh. The definition of a mesh can be a constraint when the 
domain of the problem under analysis. The use of Artificial 
Neural Networks is an alternative to solve problems without 
depending on the mesh. However, it is important to deepen the 
analysis of this mechanism. In order to verify if there is 
superiority between two methods of optimization applied to the 
solution of an Ordinary Differential Equation (ODE), in this 
article we compare the Downward Gradient and Levenberg-
Marquardt methods. We have verified that the Levenberg-
Marquardt method is, both in terms of approach effectiveness 
and in terms of convergence time, superior to the Gradient 
Descent method. 
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I. INTRODUCTION 

Optimization problems pose several challenges to 
researchers in the areas of exact sciences [1-4]. The 
development of optimal algorithms or mathematical models 
capable of optimizing the solution of problems in engineering 
is, above all, the object of study in several researches [5-7]. 
Among the classical optimization algorithms is the Descending 
Gradient method [8]. This method has been applied in several 
optimization problems, for example in the solution of ODE 
with a mesh based domain [9] or even without mesh [10].  

The Gradient Descent method, when used by an Artificial 
Neural Network (ANN), to solve an ODE was very effective if 
the domain was discretized in a pre-established mesh, but 
presented small errors when the domain was chosen randomly 
[10]. ]. Depending on the problem modeled, these errors can 
configure a relevant factor and thus represent an important 
approximation problem. Considering the above, we realized the 
need to improve these results. 

In order to improve the results obtained by [10] it is that in 
this article we implemented the Levenberg-Marquardt 
algorithm in an ANN, in order to solve an ODE and obtain 
better results than those obtained by the Gradient Descent. The 
Levenberg-Marquardt algorithm was first published in 1944 by 
Kenneth Levenberg [11]. The main difference between the 
Gradient Descent and Levenberg-Marquardt lies in the fact that 
the first is based on the gradient vector and the second on the 
Jacobian matrix [12,13]. 

For the purpose of comparison, in this article we perform 
the ODE solution presented by [10], using the optimization 
methods mentioned above. We compute the errors generated 
by each method and present them in tabular form. The results 
presented show an important improvement when Levenberg-
Marquardt is used, because the approximation error is 
considerably smaller. 

Another problem encountered when using Gradient 
Descent is that the convergence of this method can be 
relatively slow, making the time to solve the problem an 
important issue [14,15]. In this context, we also computed the 
number of iterations each method needed to converge, and we 
also found a superiority of the Levenberg-Marquardt algorithm. 

 

II. METHODS 

The methodology to solve ODE using RNA is based on the 
use of two optimization algorithms applied to the minimization 
(or maximization) of a cost function. The topology of the RNA 
used, consists of two layers with five neurons in each layer. 
This cost function must be chosen in such a way that its 
minimization (or maximization) is equivalent to solving ODE. 

Considering that our methodology will be applied to a 
second order ODE, and that this type of equation has the 
following formulation, 

   ( )

   
  ( (    

  

  
)                            (1) 

then the approximate solution can be written in the form: 

  ( )           (   )                     (2) 
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with the initial values given by  ( )      
  ( )

  
   . 

Consequently, the cost function to be minimized, either by the 
Downward Gradient method or by Levenberg-Marquardt, is 

 [ ⃗]   ∑ {
    (  ) 

   
  (      

   (  )

  
 }    where  𝑖 are the 

points of the problem domain. The points will be chosen 
randomly in order to test the effectiveness of the algorithms 
with respect to domain choice. 

A. Update of the Synaptic Weights Using the Gradient 

Descent 

Considering that the RNA model we are going to use is 
composed of two layers, an input layer and a hidden layer, and 
what w are the weights of the input layer and the weights of the 
hidden layer, then by the optimization method known as 
Gradient Descent [16] 
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  [ ⃗]

    
                                  (3) 

and 
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.                           (4) 

If we start the values of  and  in a random manner then 

by the given conditions the method will converge to the 
minimum of the cost function presented [15]. 

Solving the derivates   
  [ ⃗]
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 we obtain: 
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At where      (    ⃗)      
  (    ⃗)
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The gradient of the cost function relative to the weights of 
the hidden layer is: 
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More details on the calculation of the presented gradients 
can be found in [9]. 

B. Update of the Synaptic Weights Using Levenberg-

Marquardt 

The Levenberg-Marquardt optimization method requires 
the calculation of the Jacobian matrix of the error vector and 
 (𝑖)   [ ⃗].. 

Given that error signal  (𝑖) is a function of the adjustable 
weight vector    (or  ), and given yet an operating point  ( ), 
it is possible to linearize the dependence of  (𝑖) with respect to 
w by writing. 

  (𝑖  )   (𝑖)  [
  ( )

  
]
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Mathematically, 

  (   )   ( )   ( )(    )                (8)           

where  ( )  is the vector 

 ( )  [ ( )  ( )    ( )]                                    (9) 

and  ( )  is the Jacobian k-by-m matrix of  ( ): 
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Without loss of generality,  (   )  is defined by 

 (   )       𝑖 { 
 

 
 ‖  (   )‖  }          (11) 

Calculating the quadratic euclidean norm of   (   ) gives 
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Where    (   ( )). 

Differentiating with respect to    and equalizing the result 
to zero obtains 

  ( ) ( )      ( ) ( )                     (13) 

Solving the equation for , one can then write, 

 (   )   ( )  (  ( ) ( ))
  

    ( ) ( )          (14) 

The equation appeared with the same pure form of the 
Gauss-Newton method, but for the interaction of this method to 
be computable, the product matrix   ( ) ( ) should be non-
singular. So to ensure this non-singularity of the product matrix 
  ( ) ( )   we have as current practice the addition of the 
diagonal matrix    . Where      is the identity matrix and    is a 
parameter that adjusts the convergence rate of the algorithm. 

Then the method is implemented in a slightly modified way 
known as the Levemberg-Marquadt method: 

 (   )   ( )   (  ( ) ( )    )      ( ) ( )        (15) 

In our methodology, this same procedure is applied to 
update . This method has convergence in fewer iterations, but 
requires more calculations by interaction due to the calculation 
of inverse matrices. More details can be found in [9]. 

 

III. RESULT 

The neural model presented previously combined with the 
described optimization methods and respective synaptic 
weights update algorithms was applied to a second order 
problem, in order to verify the behavior of the solutions when 
choosing a domain with random points. The problem chosen to 
support the simulation is given by [16]: 

   

   
    

  

  
     ( )                     (16) 
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Where   
 

  
  ,   

 

 
   and  ( )       . The 

choice of these parameters was made in a random manner. 

The initial conditions  ( )    and   
( )

  
   , were 

satisfied. The parameters used in the neural network were as 
follows: 

a) An input layer and a hidden layer with weights    and  ; 

b) Number of neurons in the hidden layer equal to the 
number of neurons in the input layer equal to  ; 

c) Sigmoid activation function; 

d) Learning rate     

To make it possible to compare the results, in all 
simulations the synaptic weights were started with the same 
values: 

  [                                            ]   

And 

  [                                            ]   

Figures 1 and 2 are comparisons between the analytical 
solution and that obtained by the neural network when the 
domain was determined by choosing 10 random points in the 
interval [0,1]. In figure one was used the method of the 
Gradient Descent and in figure 2 Levemberg Marquardt. 

Figures 3 and 4 are comparisons between the analytical 
solution and that obtained by the neural network when the 
domain was determined by choosing 20 random points in the 
interval [0,1]. Figure 3 shows the downward gradient method 
and figure 4 Levemberg Marquardt. 

Figures 5 and 6 are comparisons between the analytical 
solution and that obtained by the neural network when the 
domain was determined by choosing 30 random points in the 
interval [0,1]. In Figure 5, the Gradient Descent method was 
used and in Figure 6 Levemberg Marquardt. 

 

 

Figure 1.  Comparison between exact solution and ANN (Gradient Descent) 
for a 10-point domain 

  

Figure 2.  Comparison between exact solution and ANN (Levemberg 

Marquardt) for a 10-point domain. 

 

 

Figure 3.  Comparison between exact solution and ANN (Gradient Descent) 

for a 20-point domain. 

 

 

Figure 4.  Comparison between exact solution and ANN (Levemberg 

Marquardt) for a 20-point domain.  
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Figure 5.  Comparison between exact solution and ANN (Gradient Descent) 

for a 30-point domain. 

 

 

Figure 6.  Comparison between exact solution and ANN (Levemberg 

Marquardt) for a domain of 30 points. 

 

The experiments were repeated ten times for each case (10, 
20 and 30 points) in Table 1 are the averages of the 10 
repetitions of the Mean Square Error for each experiment. And 
in Table 2 the means of the number of times of the 10 
experiments. 

 

TABLE I.  MEAN SQUARE ERROR MEAN 

Number of Points Gradient Levemberg 

10 2.9  10-4 1.8  10-7 

20 2.3  10-4 3.5  10-8 

30 2.2  10-4 2.9  10-8 

 

 

 

 

TABLE II.  MEAN OF THE NUMBER OF EPOCHS 

Number of Points Gradient Levemberg 

10 1709 9 

20 20 7 

30 47 7 

 

IV. DISCUSSION  

After analyzing the presented graphs, we noticed that the 
optimization method Levemberg Marquardt showed, in 
general, better than the Gradient Descent. This superiority can 
be verified by comparing Figures 1 to Figure 2, Figure 3 to 
Figure 4, and Figure 5 to Figure 6. As each figure shows only 
the result for a simulation, there was a need to perform of 
several simulations. The results obtained in 10 simulations 
varying the number of random points in the domain of analysis, 
confirm what was realized graphically. 

In terms of precision, the best efficacy of the Levemberg 
Marquardt method is confirmed when Table 1 is evaluated, 
because for all the experiments (10, 20 or 30 random points) 
the Mean of the Mean Squared Error was always lower for this 
optimization method, when compared to the Gradient Descent 
method. This fact means that Levemberg Marquardt's method 
results in better approximations for this type of problem. 

In addition to a better approximation, another advantage of 
the Levemberg Marquardt method is the fact that its 
convergence is, on average, much faster than the Gradient 
Descent. This fact is important because when working with 
engineering problems, the time to solve a problem is an 
important factor when choosing the solution. 

 

V. CONCLUSION 

In the light of the above discussion, we can show that 
despite the two methods presented, converge to an 
approximation of the solution of the problem, there is a 
superiority of the optimization method Levemberg Marquardt, 
in the solution of ODE through Artificial Neural Networks. 
This superiority occurs both with regard to a smaller 
approximation error and the time of convergence. 
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