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Abstract- The problem of conducting heat in a homogeneous 
environment has been studied by several researchers in the 
fields of engineering and mathematics, mainly by 
mathematicians who study Numerical Analysis. The classic 
problem that shapes this phenomenon has undergone several 
criticisms and proposals for improvement. One of the proposals 
is the Maxwell-Cattaneo model, which seeks to solve a 
paradox known as a Fourier paradox. The numerical solution 
of the Maxwell-Cattaneo law through Finite Differences has 
also been criticized and proposed solutions. One such proposal 
is an Unusual Usual Finite Differences scheme. In this paper 
we propose to make a numerical analysis of the unusual 
scheme based on the energies of the solutions. We present our 
results through a proposition and also through graphs. We 
realize that the graphical analysis collaborates with what was 
proposed analytically in the proposition. 
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I. INTRODUCTION 

Numerical and Computational Analysis has consolidated as 
an important area of Mathematics [1,2]. The solution of 
physical, biological or engineering problems through numerical 
methods imply the need for a better understanding of the 
numerical results and, in some cases, the construction of new 
methods. The construction and analysis of new methodologies 
is necessary to overcome limitations imposed by the schemes 
considered as usual. Considering the context of numerical 
regulation, we can mention the schemes known as non-
standards (Non-standard Finite Difference Methods-NSFD) [3-
6]. 

Properties such as solution positivity, solution limitations 
and monotonicity of solutions when analyzed in the context of 
NSFDs perform better than classical schemes. This is due to 
the flexibility that NSFD's have to preserve certain properties 
that are obeyed by the original mathematical model [5]. This 
improved performance has been observed in several 
applications. Among them, we can highlight the application of 
NSFD to solve problems of population dynamics in biological 
problems and diffusion-reaction problems with the objective of 
generating numerical solutions that are positive and limited [7-
9]. 

In this paper we present an analysis of an important result 
about the use of NSFDs from the work of Mickens and Jordan 
[5]. In this work, the authors construct a NSFD-like scheme 
capable of producing with physical consistency heat-wave 
solutions and of correcting a Physical Paradox imposed by the 
Fourier Hypothesis in Linear Thermoelasticity. Mickens and 
Jordan present the model and simulations of the solutions. 
However, a robust method analysis is not performed. 

In order to contribute to a numerical analysis of the scheme 
presented by [5] it is that in this paper we present a numerical 
energy proposal associated with the NSFD scheme. From this 
energy it is possible to make important comparisons and to 
promote more general observations about the proposed 
problem. Our results concentrate on presenting an analysis 
based on the energy behavior of the heat wave propagation 
system. 

We present some mathematical demonstrations and 
computational simulations for a better visualization of 
numerical results. Our simulations corroborate with the 
authors' results about the importance of using NSFDs. 

 

II. METHODS 

A mathematical model applied to engineering problems is 
the expression that mathematically represents the behavior of 
heat propagation in a homogeneous bar [10,11]. This equation 
is represented analytically as follows: 

  (   )
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                (1) 

where θ (x, t) describes the absolute temperature at a point x at 
time t. 

According to Mickens and Jordan [5], this model (known 
as Fourrier's law) implies in the fact that a thermal perturbation 
at any point in a body will be instantly felt at all other points in 
the body. That is, this model predicts that thermal signals 
propagate with infinite velocity, which does not occur in 
practice. In order to "correct" the problem cited several 
proposals have been presented, and among these proposals is 
the law of Maxwell-Cattaneo [12]. 

The Maxwell-Cattaneo law consists of a hyperbolic system 
given by: 
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on what:    
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Using the method of separation of variables we can verify 
that the analytic solution for this system is given by [13]: 
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The NSFD scheme proposed by Mickens and Jordan to 
solve numerically this problem differs from the usual scheme 
only in the approximation of the first derivative of u with 
respect to t. 
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In this way the solution, in faint differences, of the problem 
proposed by Maxwell-Cattaneo is given as follows: 
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It is important to note that for the NSFD solution it results 
in the usual scheme and for: 
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on what 
2/ xtR  . It is possible to show that this scheme 

is stable for R = 1/4. 

A. Energy-Based Numerical Analysis 

Our main proposal in this work is to present an expression 
that determines the numerical energy of the NSFD method and 
then demonstrate that this system is dissipative. 

Definition (Energy of NSFD scheme solutions): 

Given that 
n

ju  is as discrete numerical solutions, as the sum of 

squares of 
n

ju  weighted by the product tx . 
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Proposition (Energy Dissipation): For all t and x  the 

energy E is decreasing, ie: 

1 ,n nE E       .0n                                         (9) 

Proof: 

Considering the definition of energy given earlier we have 
to 
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Consequently, 
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Considering the stability criterion R = 1/4 and replacing in 
the above expression we have: 
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Applying the distributive property of multiplication, we 
obtain a summation with three important plots. In the first plot 
we apply the homogeneous boundary conditions of Dirichlet 
[14]. In the second installment, we use inequality 

2 2

.
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a b
ab    In the third installment we use the expression 

that defines the NSFD scheme. Thus, we arrive at the following 
result: 
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Therefore,  
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III. COMPUTATIONAL SIMULATIONS 

The computational simulations were done with the purpose 
of verifying the decay shown analytically in the proposed 
proposition. In this sense, we initially present a comparison 
between the exact solutions and the unusual scheme.
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Figure 1.  Comparison between the exact solution and the NSFD scheme for  

n = 2 and n = 20. 

 

Figure 2 is a comparison between analytical and proposed 
energy in this article. The analytical energy used in this 
simulation was defined as follows: 
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Figure 2.  Comparison between the energies of the exact solution and the 

NSFD scheme. 

 

Figure 3 represents a part of the behavior of the energies, 
especially the moment when the values of the energies 
intercept. 

 

 
Figure 3.  Momentum in which the energies of the exact solution and the 

NSFD scheme intersect. 

 

IV. DISCUSSION AND CONCLUSIONS 

Analyzing the solutions of differential equations obtained 
through numerical methods is a challenging task in 
computational mathematics and engineering. It is common to 
perform this analysis by graphically verifying the proximity 
between the analytical solution and the one obtained by the 
method (Figure 1). In figure 1, for example, we have two 
comparisons between the solutions at different times of time. In 
this figure we notice that for an instant of time n = 2 the 
solution of the scheme has a good approximation of the exact 
solution, but for n = 20 an approximation error is already 
perceptible. 

An analysis based on comparisons of the solutions is 
mainly not feasible because it is not possible to verify the 
approximation at all simulation moments in a single moment. 
For this reason we present energy-based analysis in figure 2. In 
this graph we can summarize a comparison for all instants of 
simulation. We realize that solutions initially approach, but 
there is a distance over time. 

In figure II, we also perceive that there is an intercession 
between the energies at a given instant. This intercession is 
shown in figure 3. This fact is important to mention because it 
is a further advantage of analyzing the method through energy. 
Figures 2 and 3 confirm what has been demonstrated 
analytically in the proposition we have demonstrated. That is, 
the energy of the NSFD scheme is decreasing and the heat 
conduction system is dissipative. 
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