
 

 
123 

International Journal of 

Science and Engineering Investigations                                 vol. 8, issue 89, June 2019 

ISSN: 2251-8843 Received on June 18, 2019 

The Use of Petri Networks for the Optimal Complexity 

Empirical Models Building Parallel Algorithm Synthesis on the 

Genetic Algorithms Basis 
 

M. I. Gorbichyck
1
, O. T. Bila

2
, T. V. Humeniuk

3 

1,2,3
Ivano-Frankivsk National Technical Oil and gas University, str. Karpatskaya 15, Ivano-Frankivsk, 76019, Ukraine 

 (1gorb@nung.edu.ua, 2ksm@nung.edu.ua, 3tarasksm@gmail.com) 

 

 

 

 
Abstract- Conducted parallelism analysis of the optimum 
complication empiric models building method on the genetic 
algorithms basis using Petri network. It is rosined that internal 
parallelism which enables to develop the effective program of 
algorithm realization on the parallel structure computer system 
has such algorithm, and it, in its turn, will result in machine 
time usage reduction during his practical realization.  
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I. INTRODUCTION 

Data obtained in the study of a complex (e.g., 
environmental) processes number, usually presented in the 
form of time series, which is described by the empirical models 
[1]. It is assumed that the structure of the model is somehow 
chosen and the identification task is only to determine the 
parameters of such a model, which in most cases is solved 
using the least squares method. Obviously, the model matching 
and empirical data accuracy depend on the model structure 
itself. For example, when choosing a model in the regression 
equation form with an increase in its members, the error, 
determined at all experimental points, monotonically decreases. 
As soon as the number of regression members becomes equal 
to the experimental points number, the error becomes zero. In 
the case when the experimental points number is greater than 
the regression model members number, one can always obtain 
an infinitely large number of empirical models [2], that is, the 
least squares method generates an infinitely large models 
number for a given numerical series. This statement is true 
only if one internal criterion is used to select models. 

According to the Gödel’s incompleteness theorem [3], it is 
essentially impossible to find an optimal and unified model 
using the sequence points that have been already used to find 
the coefficients by the least squares method. Only external 
additions allow finding a single model that is optimal for this 
complexity criterion [4]. 

The model structure choice is based on the experimental 
data numerical series types. There is a question of choosing the 

basic function for a mathematical model. For example, for 
oscillatory processes with non-frequencies with zero average 
value is recommended to use harmonic models, and if the 
oscillatory process tends to increase or decrease, then a model 
representing the sum of the polynomial trend and the harmonic 
balance should be formed. 

In the general case, the construction of empirical models is 
carried out by selecting a function from a given class, which in 
a certain sense best describes the experimental data. To solve 
the given task, acad. A. G. Ivakhnenko proposed a number of 
methods, united by a common name - an inductive method of 
the models self-organization that generates three structures of 
algorithms [5, 6]: multi-row selection algorithm of the group 
accounting arguments method (GMDH), combinatorial 
algorithm GMDH with a complete overview of all possible 
models from a given polynomial and multi-row algorithm, 
where the coefficients equal to zero of a definite polynomial 
are zeroed on each row of selection. The multichannel GMDH 
algorithm has arguments for some of the intermediate values 
generated by its nature, and the combinatorial GMDH 
algorithm for its implementation requires significant 
computational costs [7], which grow exponentially with an 
increase in the number of arguments of the empirical model. 

To reduce the computational cost and expand the scope of 
empirical models, for the implementation of which 
combinatorial algorithms are used, the method of constructing 
empirical models using genetic algorithms was proposed in [8, 
9]. Later, a similar algorithm for constructing empirical models 
was described in [10]. 

 

II. POLYNOMIAL EMPIRICAL MODELS SYNTHESIS METHOD 

BASED ON GENETIC ALGORITHMS 

The implementation of the models self-organization 
inductive method is carried out in stages: the first stage is the 
applicant’s models generation (in a certain order increasing 
their complexity); the second stage is the choice of the best 
model by the minimum of one of the selection criteria. As a 
selection criterion, choose [5]: regularity criteria 
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The inductive method of self-organizing models assumes 
that all the data obtained as a result of the experiment, are 
divided into two parts, educational and verifiable. Then in 

formulas (1) and (2)    i
y A ,    i

y B  is the output values of 

the model calculated on the sets of experimental values 
AN  і 

BN . If the criterion of regularity (1) is selected, then the 

following division of experiment data is removed [4]: 

0,7AN N  і 0,3BN N , and when choosing the criterion (2) 

is 0,5AN N  and 0,5BN N . 

Most often, the functional relationship between the output 
of an object and its inputs are chosen as follows, when building 
empirical models: 
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Where
ka , 1,k r  are parameters of the model; 

 1 2, ,
T

nx x x x is a vector of input quantities. 

We choose polynomial degree m  as an empirical model 
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where
ia  are the coefficients of a polynomial; 

jis  are 

arguments degrees that must satisfy the limit: 
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The polynomial members ‘number (4) is determined by the 
following formula [8]: 
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The model (4), where the part of the coefficients ia , 

1,i M  acquire zero values, is obtained from the complete 

polynomial using the combinatorial method of optimal 
complexity models synthesis (4). Since the optimal complexity 
empirical models synthesis task with the use of GMDH multi-
row algorithm has a large dimension, the genetic approach is 
applied to remove the large dimension. The ordered sequence 
is created, where on the i-th place will be a unit or zero, 

depending on whether the model parameter
ia , 1,i M (4) is 

different from zero or will be zero. In the theory of genetic 
algorithms, such an ordered sequence is called the 
chromosome, and the atomic element (unit or zero) of the 
chromosome is a gene. A set of chromosomes forms a 
population. An important concept in the theory of genetic 
algorithms is the function of adaptation, which determines the 
degree of the separate individuals’ suitability in the population. 
It allows the entire population to select those individuals that 
are most adapted, that is, those that match the least (highest) 
value of the adaptation function. The selection criterion (1) or 
(2) is chosen as a function of adaptation in the optimal 
complexity models synthesis task. 

Thus, based on the observation data of an object or the 
process, and on the selected model structure (4), the genetic 
algorithm forms the set of most perspective structures and 
selects the best of them using the selection criterion (1) or (2). 

Formalized recording of the algorithm will be as follows: 

, , , ,GA I CP SA SE NP               (6) 

Operators belonging to the formalized record (6) are 
executed in the following sequence. 

The initialization operator I randomly generates a 
population from I individuals each of which is a chromosome 
with length M . The number of genes in each chromosome is 
calculated by the formula (5). 

Operator CP evaluates the degree of the chromosome 

adaptation in the I powered population by calculating the 
selection criterion value (1) or (2) for each chromosome. The 
matrix F  with N M size, that is divided into two matrices 

AF and
BF , is formed from the partial functions (regressions) 

with the model coefficients
ia , 0, 1i M   (4).The matrices

AF and
BF  have M columns each, and the rows number of 

AF

and
BF matrices is determined by the capacity of the training 

set 
AN and the verifiable set

BN . The i -th column is deleted 

from 
AF matrix, if the i -th chromosome position is zero; if it’s 

one, then the corresponding column remains unchanged. As a 

result, we get the AF matrix where c columns are removed (by 

the number of zeros in the chromosome). The size of such a 

matrix will be  AN M c  . Similarly, the BF  matrix with the

 BN M c   size is obtained. Nonzero coefficients
Aja , 

0, 1j M c    of a model (4) are calculated by solving the 

normal Gaussian equation on the points set 
AN  

,
T

F A A A AM a F Y               (7) 

where  0 1 , 1, , ,
T

A A A A M ca a a a   is a vector of nonzero 

parameters of the model, which is associated with the next 

chromosome; ,

T

F A A AM F F .       1 2
, , , AN

AY Y Y Y is the 

vector of output values of the object in a set AN . 
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The values are calculated by the found coefficients 
Aa of a 

polynomial model on a set of points 
BN  

  B Ay B F a                 (8)  

 y B is known and the adaptation function value  2

j B ,  

for each chromosome from the initial population is calculated 
by formula (1). 

In the case when the displacement criterion (2) is used as a 
function of the adjustment, the equation (7) that is solved by 

the Gaussian method related to the parameters
Aa is created. 

Then   A Ay A F a  is calculated. Obtained values  y A and 

 y B give possibility to find values  2 ,j A B , 1,j I  for 

each chromosome from the population. 

The operator SA checks the execution of the algorithm stop 

conditions. Determine 

   2 2minm j
j

B B                 (9) 

or 

   2 2, min ,m j
j

A B A B              (10) 

If the minimum value (9) or (10) of the (1) or (2) selection 
criterion does not exceed a given value E, the calculation stops. 
The calculations can also stop if there is no significant 
reduction of the adaptation function as a result of the algorithm 
execution, or in the case when a given number of iterations is 
executed. 

When one of the three conditions is fulfilled, the 

chromosome
*ch , which has the condition (9) or (10) fulfilled, 

is selected from the regular population. This chromosome 
defines the structure of the optimal complexity model and 

forms the
*F  matrix in such a way that the columns which are 

associated with the null values of the corresponding genes are 
removed from the original matrix F . The calculation of the 
model parameters (4) is performed on the whole points set N  

using the LSM. 

The operator SE carries out the chromosomes selection 
using the defined by the operator SA adaptation function values 
that allows selecting those chromosomes which will participate 
in the descendants' creation for the new population. Such 
selection is performed with the natural selection principle when 
the chromosomes with the best adaptation function values (1) 
or (2) have the highest chances of a new population creating. 
The most common selection methods are the roulette method 
and the tournament method [11]. The roulette method can be 
used when the adaptation function is positive, that makes it 
suitable only for maximization tasks. The tournament method 
can be used for both, maximization and minimization tasks. 

During the tournament selection, all the chromosomes are 
divided into subgroups with the following selection from each 
chromosomes group with the best adaptation. Subgroups may 

have arbitrary size, but most often the population is divided 
into subgroups with 2 - 3 individuals in each. 

The operator NP carries out the formation of a new 
descendants' population using two basic processes - crossing 

and mutation. The probability of crossing
cP  is selected from 

the interval [0.5; 1] and the probability of the mutation
mP  lies 

within [0; 0.1]. The crossing process is carried out over 
selected chromosomes belonging to the parent pool. To do so, a 
pair of chromosomes is randomly selected from the individuals 
population. A random number is generated in the interval [0; 1] 

and, if its value does not exceed
cP , the pair of chromosomes is 

crossed. In the opposite case, the pair of chromosomes remains 
unchanged. If there is a chromosome crossing, then the gene 
position (locus), that determines the crossing point, is 
determined for each pair. If the parent pool's chromosome has
m  genes, the crossing point is a natural number less than m . 

Therefore, the crossing point fixation is reduced to the integer 
random selection from the interval [1; 1m ]. 

As a crossing process implementation result, a new pair of 
descendants is formed from a couple of parents as follows: the 
first descendant in a chromosomes pair, which is on the 

positions from 1 to 
cL  consists of the first parent’s genes, and 

for the positions from 1cL   to m it consists of the second 

parent’s genes; the second descendant in a chromosomes pair 
consists of the second parent’s genes standing at positions from 

1 to
cL , and for positions from 1cL   to m it consists of the 

first parent’s genes. 

Those parent pool genes (by replacing the unit by zero and 

vice versa) that have the drawn number less or equal mP  are 

suitable for mutations. 

When the operator NP is performed, the algorithm keeps 

working starting from the operator CP . 

 

III. PARALLEL ALGORITHM SIMULATION USING PETRI NETS 

The implementation of the optimal complexity models 
synthesis algorithm showed that it yields a significant profit 
over time in comparison with the combinatorial method of the 
models selection. But the machine time usage increases with 
the dimension increase of the empirical models synthesis task. 
In [12] it is shown that such an algorithm has internal 
parallelism. This algorithm property allows reducing the 
machine time usage for its implementation. 

An efficient simulation tool for parallel processes is Petri 
networks. The Petri nets construction based on some concepts 
set and rules that allow building bipartite graphs, which 
includes two types of tops: transitions topsT and positions tops

 that are connected with the arcs K by the certain functional 
rules S  [13,14]. 

The Petri network that is shown in Fig. 1 simulates the 
optimal complexity models synthesis algorithm for the case 
when the regularity criterion (1) is selected. Petri network (Fig. 
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1) contains a predicate represented by positions p , 
ap and p , 

transitions
,1at and

,2at , which determines the algorithm 

completion in addition to the main operators. 

 

 

Figure 1.  Simulationof the optimal complexity models synthesis algorithm 

using Petri networks 

 

The Petri network structure (Fig. 1) can be divided into 
tiers. There are no connections between the vertices in the 
middle of each tier. The outputs of each tier are arguments for 
the next tier. The zero tier of the Petri network contains an 

empty position sp marked by a marker. 

The first tier of the Petri network contains positions
1

, , 1,y kp k I  that simulate the process of creation of the matrix 

of the observations
  j

i
N n

X x


 and a observations vector Y

with components y , 1, Ni i  , where N  is the number of 

observations by the input value; n is the number of empirical 

model arguments (4), and positions 1

ch, , 1,kp k I , each of 

which is associated with the chromosome formed by the 
operator I . 

The second tier of the Petri network is represented by 

positions 2

F, , 1,kp k I  that are intended to form matrices
 k

AF  

and
 

, 1,
k

BF k I  with the help of an operator CP . 

The third tier contains positions 3

a, , 1,kp k I  that simulate 

the calculating process of the empirical model coefficients (4) 
by the formula (8). 

The fourth tier is presented by positions 4

B, , 1,kp k I , each 

of which is intended to calculate   , 1,ky B k I  on the 

veritable points set
BN . 

The fifth tier contains the positions 5

, , 1,kp k I   that initiate 

the calculating process of the regularity criterion (1) for each 
chromosome that is generated by the operator I . 

The position
mp  corresponds to the process of selecting the 

most adapted chromosome from the relatives pool I . Such a 
choice is made using the regularity criterion (1). The position

p
 has a permanent marker and it specifies the required 

accuracy of the calculations ; the position of the free choice

Dp  is responsible for the formation of the condition. If the last 

one is executed, the transition
Tt  will work. In case, when a 

condition  2

m B    exists, the transition 
Ft becomes allowed 

and the calculation process continues with the execution of CP  

operator. 

The algorithm (Fig. 1) starts after the empty position
sp is 

activated that causes the marker movement over the network. 

As a result, all the entry positions   , 1,kIn t k I  of the first tier 

are marked with markers that will trigger the transition
1 , 1,kt k I . Since the results of observations for input and 

output values are used on the first, second and fourth tiers, the 
markers must be permanently located in the positions

1

, , 1,y kp k I . This is achieved by the fact that the positions 

1

, , 1,y kp k I are both input and output positions of transitions

1 , 1,kt k I  [14], that is    1 1 1

, O In , 1,y k k kp t t k I   , and 

after their activation, the preliminary marking of positions
1

, , 1,y kp k I  is retained. 

When the transitions
1 , 1,kt k I  are triggered, markers 

appear in the second tier positions 2

F, , 1,kp k I . The situation is 

similar to the situation of the first tier: the matrices
AF  and

BF

are used to calculate the model parameters (4) by solving the 
equation (7) (third tier) and to calculate the values 

 y , 1,k B k I by the formula (8) (fourth tier). 

Therefore, markers will always be in positions 2

F, , 1,kp k I  

after the 1 , 1,kt k I  transaction is performed. 
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Such markers movement occurs consistently from the 
previous to the next tiers, that leads to the corresponding 
transitions activation (Fig. 1). 

When the condition  2

m B    is fulfilled, a transition 
Tt

triggers and a marker will appear in the position fp , indicating 

the calculation process completion. In the case when the given 
accuracy of the optimal complexity model synthesis task 
solution on the genetic algorithms basis is not achieved  

 2

m B   , the transition to the operator SE  (Fig. 1) is 

carried out and the calculations continue until the algorithm 
stop condition is fulfilled. 

It should be noted, that two other algorithm stop conditions 
are not shown in Fig1. They are similar to the conditions 
specified by the operator SA , and they are executed 

sequentially after the operator SA execution. 

Petri network that is shown as a dipole graph (Fig. 1), sets 
the initial network state (network static). When the transition 

st is activated (the beginning of the algorithm), the marker 

moves the network from one tier to another. Such a change in 
the Petri network state is called network dynamics [14]. The 
Petri network behavior is reflected through a marking diagram 
[14]. Diagram given in Fig. 2, corresponds to Petri network 
that is shown in Fig. 1. The network conditions change is 
characterized by a marking mechanism that defines the active 
transition activation rule. When the marker moves from 

position kp  to position 
1kp 

, that is displayed by 1 0 or 

0 1 . This means that when the active transitions are 

triggered, the marker is removed from the original positions in 
its input positions (or vice versa) (Fig. 2). The transitions 
activation and the corresponding markers removal from 
positions start when an appropriate event occurs due to the next 
operator from the tuple execution (6). 

According to the diagrams of markings (Fig. 2), it is 
possible to determine the sequence of transitions that are the 

trajectories of the computing process: 1 2 5

k k k T F ft t t t t t t 
 
or 

1 2 5 1 2 5

k k k T F SE SP r k k kt t t t t t t t t t t t  T F ft t t t  , where 

T Ft t  means that one of the transitions Tt  or Ft is triggered, 

depending on the condition fulfillment  2

m B    or 

 2

m B   . 

The Petri network diagrams analysis (Fig. 2) shows that it 

is 1-limited, because the condition   1ip  is fulfilled on its 

achievable states set in all positions. The 1- limitation network 
property determines its safety [14]. Considering that each Petri 
network transition t T (Fig. 2) is potentially active, such a 

network is alive [14]. 

In addition, Petri network (Fig. 2) is stable. The network 
resilience property stems from the fact that the activation one 

of the transitions 
1 1 1

1 2, , , It t t and 
2 2 2

1 2, , , It t t  does not remove 

activity from other transitions. 

Thus, Petri network (Fig. 1) has the properties of 1-
limitation, safety, and also is alive and stable, which 
determines the effectiveness of the optimal complexity 
empirical models building algorithm on the genetic algorithms 
basis. 

The efficiency of the developed algorithm is confirmed by 
the construction of empirical polynomial models for a 
processes number taking place in such fields as gas 
transportation [8], drilling of wells for oil and gas [15] and 
ecology [16]. 

 

 

Figure 2.  Petri Network Marking Diagram 

 

IV. CONCLUSION 

Petri network that is divided into five tiers is constructed 
for the optimal structure empirical models synthesis algorithm 
based on genetic algorithms that have internal parallelism. The 
positions number in each tier is determined by the 
chromosomes amount generated in the first step of the 
algorithm. The Petri network positions number are associated 
with such operations as a linear algebraic equations system 
solving and multiplying the matrix by a vector that may also 
have internal parallelism. Internal parallelism is a characteristic 
property of the algorithm and does not depend on the 
computing system where such an algorithm is implemented. 
The presence of internal parallelism in the algorithm enables 
the implementation of such an algorithm on a computing 
system with a parallel architecture that will reduce the machine 
time usage. 
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