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Abstract-Learning an accurate mapping between the complex 
feature representations of histology images and their labels can 
magnify the reliability of automated diagnostic systems. 
Hence, breast histology Image classification is a significant 
problem in medical image processing. CNNs showed 
superiority in extracting beneficial features and became the 
most widely used image classification approach. However, the 
current state-of-the- art CNN techniques, such as Transfer 
Learning, fail to generalize for small datasets with complex 
texture and high resolution due to insufficient domain-
adaptation. Furthermore, most ensembles of transfer learning 
models need manual parameter selection of the ensemble 
policy based solely on the accuracy of each classifier, without     
a guarantee of heterogeneity. To solve these problems, we 
propose a fully automated multi-stage training of horizontally 
stacked ensemble of CNNs, which consists of two stages. First, 
we optimize the task-specific layers and the ensemble hyper-
parameters on low-resolution images using the Genetic 
Algorithm during the meta-training stage. Secondly, we 
thoroughly train the ensemble using the optimal parameters on 
high-resolution images. Our model achieved 1% more 
accuracy than the ICIAR 2018 Challenge winning approach. 
The results of the proposed method have been compared to 
previously published methods and exceeded many of the state-
of-art techniques by a substantial margin. 
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I. INTRODUCTION 

Histological image classification is one of the most crucial 
problems of medical image processing, which demands 
extensive work and specialized expertise [1–3]. Hence, an 
automated intelligent approach is needed to compensate for the 
time delay of analysis caused by the insufficient number of 
pathologists [4]. Early diagnosis of breast malignancy through 
histology patches is of prominent clinical significance for 
detection, prognosis, therapy, and reducing healthcare costs [5, 
6]. Breast histology image classification aims to identify 
abnormalities in the specimens’ structures and specify their 
carcinogenic level [7]. Deep Learning (DL) showed 
remarkable competence in tackling image classification over 

the past years due to the accelerated developments in 
computational resources [3, 5, 6, 8]. 

Deep Learning techniques extract very complex features for 
images, which expands class separability considerably better 
than the conventional machine learning methods [9]. Various 
DL approaches have been applied to categorize histology 
images. CNNs are the most reliable DL models employed for 
Histology image labeling [10]. How- ever, for CNNs to be 
accurate, they demand a high quantity of labeled images. The 
more parameters   a CNN holds, the larger the dataset needs to 
be, and the more training time is required, which is a limitation 
acknowledged in the DL research as the curse of 
dimensionality [11]. Consequently, end- to-end training of 
CNNs suffered significantly, due to the scarcity of annotated 
hematoxylin and eosin (H&E) stained histology images. 

The trade-off between the scale of the model and the 
computational demands is often one of the issues hindering the 
performance of the state-of- art techniques. The extent of the 
model depends on the depth of the network and the resolution 
of the input images. The size of the input images is particularly 
crucial to histological image classification as a result of the 
enigmatic characteristics of these high-resolution images. 
However, in many cases, computational capacity limitations 
constrain researchers to resize the patches to a shallower 
resolution, which negatively influences the accuracy of the 
model [3]. 

Several preprocessing methods were applied to improve the 
performance of CNNs such as image enhancement, 
thresholding, normalization, and spatial transformation [6, 9]. 
Although preprocessing methods achieved a slight 
improvement, they failed to address the curse of dimensionality 
bottleneck. 

Transfer Learning is the process of reutilization of models’ 
weights that were trained on benchmark datasets such as 
ImageNet [12, 13]. Transfer Learning proved to be a more 
reliable alternative to end-to-end training because it improves 
accuracy and robustness and reduces the training time 
significantly, particularly for small datasets [13]. Utilizing pre-
trained models to extract features and fine-tuning the last 
densely connected layer remained the most two Transfer 
Learning approaches applied for image classification. Al- 
though using pre-trained weights as initial weights performed 
better than end-to-end training, they overlooked domain 
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transferability and determining the task-specific layers of the 
pre-trained model in histology images datasets [14]. 

Another attempt to improve the accuracy of models for 
small histology image dataset was by employing ensembles. 
Ensembles are sets of CNNs whose predictions are joined in a 
particular fashion to produce a final prediction [15]. Bayesian, 
majority voting, average voting are the most popular DL 
ensemble methods [15, 16]. Although ensembles achieve 
higher accuracy than individual networks, they are 
computationally expensive due to the immense search space of 
hyper-parameters. Besides, the extracted features of each 
classifier need to be distinct for an ensemble to generalize well 
on new unseen data [15, 16]. Modern ensemble methods focus 
solely on the validation accuracy of the ensemble networks 
without approaching the heterogeneity of their features and 
variance of their errors, which frequently leads to over-fitting. 

In this paper, we propose a method that leverages the 
Genetic Algorithm to ascertain the task-specific layers of pre-
trained networks on low- resolution images for optimal domain 
adaptation. We use the confusion matrix of the models over the 
validation data to define the heterogeneity of CNNs. 
Subsequently, we thoroughly train the most accurate models 
and with the most diverse errors on high-resolution images by 
applying the learned parameters. Finally, we learn the 
ensemble rule that combines the horizontally stacked 
prediction vector. 

The remaining sections of the manuscript are organized in 
the following way. Section II introduces the proposed method 
with a thorough explanation of the Genetic Algorithm and 
hyper- parameter optimization. Section III discusses in detail 
the dataset, training, experimental setup, results, and evaluation 
metrics employed. Section IV presents a conclusion and 
suggestions for prospective research. 

 

II. PROPOSED METHOD 

A. Overview 

The proposed method consists of meta-training and full 
training stages. The meta-training phase, as shown in Figure 1, 
begins with statistical image preprocessing, augmentation, and 
low- resolution cropping. Several image spatial 
transformations, such as flipping, rotation and shifting, lead to 
effective dataset enlargement, which contributes to lowering 
overfitting [17]. The augmented images are resized to a lower 
resolution to expedite the meta-training. The resultant crops are 
standardized by utilizing the ImageNet statistic to reduce the 
distribution disparity between the image sources of the two 
domains. Image whitening demonstrated efficacy in hastening 
convergence [18]. All of the preprocessing procedures 
described above occur in real-time right before the mini- 
batches are fed to the networks to be trained. 

Gaussian Dropout is another technique that we 
implemented in our solution. Adding the gaussian noise to the 
hidden layer connecting the global averaging and the output 
layers is an added variation of stochastic regularization. The 
dropout layer restricts the classifier from learning the irrelevant 

particularities of an image [19]. Dropout involves blocking 
several units from firing during the feed- forward and the 
backpropagation steps of training. The portion of the dropout 
units is governed by the gaussian distribution, whose standard 
deviation is expressed in equation (1). 

( ) / (1 )gaussian rate rate               (1) 

Where rate denotes the user control parameter and 
σ(Gaussian) refers the dropout Gaussian standard deviation. 
Setting the constant rate to 0.2 through- out the trials yielded an 
excellent performance. 

Incrementally raising the learning rate at every batch 
accelerates the fine-tuning process by estimating the best base 
learning rate, as explained in subsection II-B [20]. During fine-
tuning, all layers are frozen except the batch normalization and 
the last fully connected layer. Training the batch normalization 
weights reduces the needed training epochs substantially due to 
its capacity to lower the internal covariant shift during mini- 
batch training [21]. The validation loss of the fine- tuned model 
is the baseline used to compare the achievement of the Genetic 
Algorithm (GA) best solutions. 

In this study, we propose GA to obtain the fittest estimation 
of the domain-specific layer, as illustrated thoroughly in 
subsection II-C. The Cyclical learning rate and GA 
cooperatively evade the inconvenience of extravagantly 
experimenting with numerous freeze-layers and base learning 
rates. The intuition behind the proposed strategy relies on the 
fact that the domain-adaptation maximization is separable. The 
foreknowledge, as mentioned above, remarkably narrows the 
possible combinations of hyperparameters. 

 

 

 

Figure 1.  Flowchart of the meta-training phase 



International Journal of Science and Engineering Investigations, Volume 8, Issue 95, December 2019 115 

www.IJSEI.com            Paper ID: 89519-16 ISSN: 2251-8843 

B. Learning Rate Schedulers 

 

 

Figure 2.  High spikes of validation loss and accuracy curves over 

exponential cyclical learning rate in a single epoch in ResNet50 with freeze 

layer = 141 and a batch size = 32. The learning rate with the lowest validation 
loss at lr = 0.05 is chosen as the base lr for the full training. 

 

Learning rate scheduling methods aim to minimize the cost 
function. It is unlikely to get trapped at local minima at high 
dimensional cost functions. Nevertheless, saddle points are 
more likely to occur. Similar to local minima, saddle points 
slow down the training significantly, particularly if the LR is 
small [20]. Increasing the LR in this scenario could help the 
optimizer to escape the saddle point. However, over-increasing 
the LR will cause fluctuations with high spikes. Hence, a 
cyclical LR scheduler facilitates picking the optimal LR by 
defining the scaling function, the upper, and the lower bounds 
[20]. 

 

1

    

argmax(0, (1 ))

2
LR

Updated LR base LR max LR base LR

LR



  




                    (2) 

C. Genetic Algorithm and Ensemble Optimization 

The objective of implementing the genetic algorithm is to 
evolve the solutions to the task- specific layer problem by 
simulating the natural selection though mating and mutation 
[22]. 

Each possible solution to the domain-specific layer is 
represented by a chromosome. Any layer in the search space of 
the network is encoded into fixed-length nine binary numbers 
representing 512 possible solutions. After calculating the initial 
fitnesses, the fittest layers are chosen to exchange genes at a 
predefined crossover probability Pc to produce better 
offsprings in the next generation. 

We freeze all layers up to the decoded chromosome. Then, 
a cyclical learning scheduler learns the best base learning rate, 
as explained in the previous subsection. The model is then 
trained for more epochs, and the validation loss is used as the 
fitness function parameter to be minimized. 

After the completion of the meta-training, models that 
achieved the most reliable in terms of validation accuracy and 

loss are analyzed based on heterogeneity, as displayed in 
Figure 2. The confusion matrix facilitates a valuable 
representation of the kind of misclassifications that the model 
makes. The models that produce similar misclassifications are 
discarded. 

The predictions of the top-performing heterogeneous 
networks are then concatenated horizon- tally to form a pre-
classification layer. We further train the weights of this layer 
while freezing the whole model to make the ensemble training 
efficient and more accurate than simple ensembling policies 
such as the majority and average voting. Adding the horizontal 
layer notably improved the generalizability of the model, as 
demonstrated in Table IV and Table V. 

 

III. EXPERIMENTAL SETUP 

A. Dataset 

The histology patches dataset consist of 400 labeled 
training data and 100 unlabeled test images, each with a 2048 x 
1536 pixels. The distribution of cancerous classes of the 
images is uniform, as shown in Table I. Highly experienced 
medical specialists classified the images into four categories. 
The Classes are Normal, Benign, In- Situ, and Invasive. The 
resolution of the images is 0.42 µm x µm per pixel. 

 

TABLE I.  THE DISTRIBUTION OF THE ICIAR DATASET IN OUR STUDY 

Type Normal Benign InSitu Invasive 

Train 90 90 90 90 

validation 5 5 5 5 

Held-out test 5 5 5 5 

Test 25 25 25 25 

 

 

B. Evaluation Metrics 

We employed the standard evaluation met- rics to compare 
the performance of the proposed method to other existing 
techniques. The used evaluation metrics are as follows: 

 Accuracy: the rate of correct predictions to the total 
number of samples [23]. 

TP TN
acc

Samples



 


              (3) 

 Precision: the rate of correct class predictions to the total 
number of samples belonging to that class [23]. 

   Precision TP TN               (4) 

 Recall: the true positive rate [23] 

TP
TPR

positive samples





            (5) 
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(a) 

 

(b) 

Figure 3.  The Effect of the GA Block on Convergence. a) Xception network 
with GA block converges with a small number of epochs. b) Xception 

network bottom-top training over fits due to the lack of proper domain 

adaptation. 

 

1 2
precision recall

F score
precision recall


 


 

 log-loss: the cross-entropy loss, which is the negative log-
likelihood of the class labels given predictions [23]. 

 The area under the ROC curve 

C. Results and Discussion 

Domain adaptation is decisive for transfer learning. The 
Genetic Algorithm demonstrated supremacy in determining the 
transferable layers, as shown in Figure 3a. As an example, the 
GA solution of the freeze layers of the Xception enabled the 
model to transfer swiftly and converge with few epochs. In 
contrast, the bottom-top strategy of fine-tuning failed to 
converge even with substantially more iterations. As the 
number of epochs increased, the training accuracy increased, 
but the validation loss increased as well. This phenomenon is 
referred to as overfitting since the model is not learning the 
characteristics that increase the class reparability margin. 
Alternatively, the model is learning the dataset noise, which is 
profoundly undesirable. Hence, implementing GA for 
specifying the transferable features of the network was vital for 
convergence. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.  Error Type Visualization to Aim Choose Hetrougenous Models by 

Using the Confusion Matrix. a) DenseNet201 confusion matrix. b) ResNet50 
confusion matrix. c) InceptionResNetV2 confusion matrix. d) Xception 

confusion matrix. 
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Besides, the effectiveness of the base learning rate is highly 
correlated to the level of transferability of layers. The more 
transferable the layer is, the higher the base learning rate needs 
to be and vice versa. The occasional divergence of the bottom-
top training is a result of setting a high base learning rate for 
layers with low transferability. Figure 3 shows how quickly 
cyclical learning rate picks the most appropriate base LR with 
minimal time cost. Our proposed approach shows notable 
improvements over earlier published schemes for ensemble 
learning. The optimized horizontally stacked predictions’ 
vector exhibit increased classification accuracy and additional 
DL evaluation measures, as confirmed in Table V. 

 
TABLE II.  MAJORITY VOTING CLASSIFICATION REPORT 

Class. Report precision recall f1-score 

Benign 1.00 0.37 0.54 

InSitu 0.60 1.00 0.75 

Invasive 1.00 0.93 0.97 

Normal 0.97 1.00 0.98 

micro avg 0.82 0.82 0.82 

macro avg 0.89 0.82 0.81 

weighted avg 0.89 0.82 0.81 

samples avg 0.82 0.82 0.82 

 
TABLE III.  AVERAGE VOTING  CLASSIFICATION REPORT 

Class. Report precision recall f1-score 

Benign 1.00 0.70 0.82 

InSitu 0.97 1.00 0.98 

Invasive 1.00 1.00 1.00 

Normal 0.79 1.00 0.88 

micro avg 0.93 0.93 0.93 

macro avg 0.94 0.93 0.92 

weighted avg 0.94 0.93 0.92 

samples avg 0.93 0.93 0.93 

 
TABLE IV.  PROPOSED VOTING CLASSIFICATION REPORT 

Class. Report precision recall f1-score 

Benign 1.00 0.73 0.85 

In Situ 0.97 1.00 0.98 

Invasive 1.00 1.00 1.00 

Normal 0.81 1.00 0.90 

micro avg 0.93 0.93 0.93 

macro avg 0.94 0.93 0.93 

weighted avg 0.94 0.93 0.93 

samples avg 0.93 0.93 0.93 

 

TABLE V.  EVALUATION OF THE PROPOSED METHOD COMPARED TO 

MAVORITY AND AVERAGE VOTING 

Eval. /method Proposed Maj. Avg. 

P. auc roc 0.9994 1.0 0.9934 

L. auc roc 0.95556 0.8833 0.95 

L. accuracy 0.933 0.825 0.925 

P. precision 0.9985 1.0 0.988 

L. precision 0.8946 0.760 0.883 

L. log loss 2.302 6.0442 2.590 

L. coverage error 1.2 1.525 1.225 

P. coverage error 1.116 1.25 1.133 

L. LRAP 0.95 0.868 0.943 

P. LRAP 0.9583 0.899 0.9527 

ranking loss 0.066 0.175 0.075 

ICIAR acc. 88% 85% 87% 

 

IV. CONCLUSION 

The current state-of-the-art transfer learning methods for 
microscopy image classification lack the systematic separation 
between task-dependent layers and transferrable ones, resulting 
in over- fitting when training over a limited amount of samples. 
Moreover, their ensembles have a massive number of hyper-
parameters, making it challenging and time-consuming to 
choose the optimal ones manually. 

This paper presents the utilization of evolutionary 
algorithms and the cyclical learning rate scheduler to automate 
the selection of task-specific layers and its appropriate base 
learning rate during meta-training. The meta-training shrinks 
the hyper- parameters search space considerably, yielding an 
accelerated convergence during the comprehensive training 
stage. Also, it exhibits an intuitive measure of heterogeneity 
and automatic optimization of the horizontally stacked 
prediction vector’s weights. The experimental outcomes 
confirm the competence of the proposed method in terms of 
robust- ness and training time efficiency. 

We strongly recommend further investigation toward 
learning rate schedulers and other search methods of hyper-
parameters. Hence, future research should place a particular 
emphasis on quantum search methods, such as Grover’s 
algorithm, which provides a precise calculation of the 
iterations’ upper bound that assures an optimal solution. 
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