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Abstract- Wind power generation is a highly important part of 
the development of renewable energy systems. In particular, 
offshore wind power is being actively developed in Taiwan. 
Offshore wind power systems and grid-connected technologies 
are worthy of attention. In addition to power system analysis, 
the structural design and principles of wind power generators 
(WPGs) as well as the possible methods for improving their 
performance should also be studied. A variety of generators 
can be used in wind turbines, such as permanent magnet 
synchronous, permanent magnet reluctance, switched 
reluctance, and superconducting generators. However, different 
generators have different characteristics and uses. This study 
explores the advantages and disadvantages of various types of 
WPGs. We review the current structural design principles of 
WPGs, including power generation efficiency, cogging torque, 
torque ripple, output power, materials, cost and reliability. 
These factors can be used as important criteria for the future 
design of WPGs in terms of the stator/rotor structure and 
performance. 
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I. INTRODUCTION 

Wind turbines convert wind energy into electricity for 
distribution in the grid. Traditional horizontal-axis turbines 
consist of three major components (as shown in Fig. 1): (a) The 
rotor, which includes the blade and converts wind energy to 
low-speed rotational energy, and its cost is approximately 20% 
of that of a wind turbine. (b) The generator assembly, which 
converts low-speed input rotation to high-speed output rotation 
for power generation, and its cost is approximately 34% of that 
of a wind turbine; it includes the components of the generator 
(Goudarzi, 2013; Goudarzi & Zhu, 2012), control electronics, 
commonly used gearbox (e.g. planetary gearbox), adjustable-
speed drive, or continuously variable transmission. (c) The 
surrounding structure, which includes the yaw mechanism of 
the tower and the rotor, and its cost is approximately 15% of 
that of a wind turbine. 

 

Figure 1.  Components of a conventional horizontal-axis wind turbine (Saad 
& Asmuin, 2014) 

 

With the growth of power demand and environmental 
awareness, the development of renewable energy has attracted 
increasing attention, and various renewable energy 
technologies have been developed. Among them, wind power 
is an ideal choice for power generation. Moreover, with the 
rapid development of wind power technology, several types of 
generators (Kim & Lu, 2010; Polinder, 2011) have been 
successively applied to wind power generation systems. They 
include Induction Generators (IGs), Permanent Magnet 
Synchronous Generators (PMSGs), Switched-Reluctance 
Generators (SRGs) and Flux-Switching Permanent Magnet 
(FSPM) machines. Among them, IGs are a common type of 
early wind power generators owing to their simple structure 
and low price (Bansal, 2005; Grauers, 1996). However, IGs 
require virtual work compensation components, and most of 
them require gearbox design, resulting in low efficiency and 
reliability. Accordingly, direct-drive PMSGs have attracted 
attention owing to their simple structure, high energy field, 
high efficiency and low maintenance cost. However, the main 
problem of this type of generator is the high cost of the 
Permanent Magnet (PM). To reduce the cost of wind turbines, 
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some wind turbine manufacturers have developed reluctance 
WPGs (Boldea et al., 2014) and FSPM WPGs (Boldea et al., 
2014; Lin & Zhu, 2008; Yan et al., 2009). The design principle 
of reluctance WPGs is to use the WPG structural design to 
make the magnetic flux pass the path of lower reluctance, 
thereby reducing the iron loss and improving efficiency. In 
fact, an FSPM machine is a combination of a brushless PMSG 
and a switched-reluctance machine (Thongprasri & 
Kittiratsatcha, 2014; Chouitek et al., 2014; Chen & Zhu, 2010); 
therefore, it has the advantages of higher power and torque 
density, smaller volume and weight, higher reliability, rigid 
structure and fault tolerance compared with both PMSGs and 
Doubly Fed Induction Generators (DFIGs) (Thongprasri & 
Kittiratsatcha, 2014; Chouitek et al., 2014; Chen & Zhu, 2010; 
Fei et al., 2012; Chen & Nilssen, 2010; Wei et al., 2006), thus 
suggesting the feasibility of FSPMs for direct-drive wind 
turbines as successors of PMSGs (Zohoori et al., 2014; Ojeda 
et al., 2012; Christopher et al., 2014). 

For the past few years, megawatt wind turbines have been 
increasingly applied in maritime applications. As the size of 
wind turbines increases, their weight and volume also increase. 
For example, a 10 MW conventional direct-drive PM generator 
weighs approximately 300 tons (Terao et al., 2013). Therefore, 
to reduce the weight of wind turbines, superconducting 
materials have begun to be applied to the structural design of 
WPGs. Owing to their small weight, small size and high 
efficiency, superconducting materials have become one of the 
choices of WPG materials. Using superconducting instead of 
copper coils can effectively reduce the volume and weight of 
WPGs. Currently, research on superconducting materials in 
wind turbines includes the position of superconductors in 
WPGs (such as partial superconduction or full 
superconduction) and the topological structure of 
superconducting generators. In addition, some studies have 
also analysed the characteristics of superconducting WPGs and 
PMWPGs (Terao et al., 2013; Kudrjavtsev et al., 2015; Tariq et 
al., 2011; Eriksson & Bernhoff, 2012). 

Recently, the megawatt wind generators, particularity 
applied in offshore area, e.g., Taiwan Strait, become more 
popular. That is, the size of the wind turbine generators 
becomes large. For instance, the weight of a 10 MW 
conventional Direct-Drive Permanent Magnet Synchronous 
Generator (DDPMSG) is around 300 tons (Lin & Zhu, 2008; 
Y. Terao et al., 2013). The cost of a typical offshore wind 
turbine is two to three times the cost of onshore wind turbine, 
while costs of turbines and their assembly account for 22.1% 
and 11.1% of the total cost (Moné et al., 2017). This article 
discusses how the structural design types of WPGs affect the 
performance of wind turbines, and provides the suggestions for 
future R&D, which will definitely contribute to the on-going 
offshore wind power construction in Taiwan Strait. 

 

II. MAGNET MATERIALS OF WIND POWER GENERATORS 

The magnet materials applied in WPGs can be roughly 
classified into Ferrite, AlNiCo and rare-earth materials. Ferrite 
is one of the oldest materials used in the field and is corrosion 
resistant and inexpensive (Kudrjavtsev et al., 2015). However, 

its disadvantage is that a large amount of material is required in 
the manufacturing process, resulting in large (Kudrjavtsev et 
al., 2015) and overweight wind turbines. 

In addition to satisfactory corrosion resistance, AlNiCo 
materials are more tolerant in high-temperature environments 
(Kudrjavtsev et al., 2015). Their working temperature can be as 
high as 600°C, with the advantages of easy processing and 
non-deformation. However, the nonlinear hysteresis curve of 
AlNiCo causes difficulty in temperature design (Kudrjavtsev et 
al., 2015). Magnets made of rare-earth materials have high 
energy density, which can effectively reduce the amount of 
magnetic material, thereby reducing the manufacturing cost. 
However, their disadvantages are poor heat resistance, low 
corrosion resistance and high cost (Tariq et al., 2011). By 
combining the characteristics of WPGs using these magnetic 
materials, new types of WPGs have being developed, including 
SRG, PM SRGs and FSPM WPGs, in which the amount of 
magnetic material is reduced, or even the need for using 
magnets is eliminated. 

 

III. STRUCTURE OF WIND POWER GENERATORS 

A generator is a device that converts kinetic or other forms 
of energy into electricity. First, a prime mover converts energy 
from various primary sources into mechanical energy, which is 
then converted into electric energy through the generator. 
Subsequently, the electricity is sent to consumers through a 
distribution network. In general, a generator uses hydraulic or 
wind power to rotate the coil between the poles of a magnet; 
when the coil rotates, the magnetic field in the coil changes, 
thus generating an induced current. This is a method for 
generating electrical energy by a power conversion mechanism 
based on the principle of ‘electromagnetic induction’.  

Generators can be classified into two types: (1) Axial 
magnetic field generators, (also called disk generators) in 
which the direction of the main magnetic field is axial; the 
axial direction is small and the radial size is large. (2) Radial 
magnetic field generators, in which the direction of the main 
magnetic field is radial, and the axial dimension is large. They 
are also called cylindrical generators and are widely used. 

A. Permanent Magnet Wind Power Turbines 

Owing to their simple construction, PMWPGs have become 
increasingly widespread (Eriksson & Bernhoff, 2012; Barcaro 
& Bianclu, 2012; EL-Refaie, 2010). They have a magnet 
arrangement on the rotor side and a winding mounted on the 
stator side. PMWPGs do not use brushes and slip rings, and 
their power generation is efficient and reliable. However, 
owing to the high price of the magnets, PMWPGs are 
expensive to manufacture. In addition, there is a 
demagnetisation effect. In general, PMWPGs can be classified 
according to the rotor position based on the magnetisation 
direction. 

According to the magnetisation direction, PMs can be 
classified into three categories (Jian et al., 2009; Husain et al., 
2016; Brad et al., 2017): Radial-flux, axial-flux and transverse-
flux. Structurally, radial magnetisation indicates that the 
magnetisation direction is perpendicular to the mechanical 
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bearing. In axial magnetisation, the magnetisation direction is 
parallel to the mechanical bearing. Radial magnetising WPGs 
are widely used. Therefore, the literature on the structural 
design of radial magnetising PM generators is also most 
extensive. The relevant studies are as follows: 

Chen et al. studied the design of externally transformed 
PMWPGs (Chen et al., 2005). Their structure was simulated by 
finite element analysis, and their effectiveness was verified. In 
WPGs, cogging torque may cause noise and vibration. In a PM 
generator, cogging torque is caused by the interaction between 
the rotor and the stator slot. This is also known as detent or 
‘no-current’ torque. Cogging torque is position-dependent, and 
its periodicity per revolution depends on the number of 
magnetic poles and the number of teeth on the stator. Cogging 
torque is an undesirable feature for the operation of PM 
generators. Jerkiness is particularly prominent at lower speeds. 
Cogging torque causes torque ripple as well as speed ripple; 
however, the inertia moment of the generator filters out the 
effect of cogging torque at high speeds. Therefore, in the 
design of a WPG, reducing the cogging torque is an important 
issue. Several methods have been developed for reducing the 
cogging torque, including the chute structure (Kudrjavtsev et 
al., 2017), inclined magnet, and slot ratio designs. 

To reduce the cost of magnets in WPGs, AlNiCo magnets 
are used instead of general ferrite magnets, and magnetic-flux-
concentrated rotors are installed to resolve the demagnetisation 
problem of AlNiCo materials (Faiz et al., 2016). Arafat et al. 
(2016a) proposed fractional-slot internal rotors to reduce the 
cogging torque of PMWPGs. 

To improve the performance of WPGs, an optimised design 
method has been proposed to reduce the amount of magnetic 
material and conductor copper (Almandoz et al., 2016). In 
addition, Chirca et al. (2016) proposed a multi-phase design 
and a rectifier circuit that can also reduce the cogging torque. 
Moreover, Melcescu et al. (2017) used a dual-rotor structure to 
increase the conversion efficiency of WPGs. In Chirca et al. 
(2016), a radial rotor structure was also used because the 
magnetic flux becomes more concentrated in the rotor, and thus 
more space is reserved for the magnet. 

Buried radiant rotors and slotted structures have been 
designed to achieve high torque and low voltage regulation (Li 
et al., 2015). Furthermore, different types of groove and 
fractional-slot designs have been proposed to reduce the 
cogging torque, thus increasing the power generation efficiency 
(Arafat et al., 2016b). 

Axially magnetised PM generator is another type of WPGs. 
For example, Brad et al. designed an axially charged WPG in 
which finite element analysis was used to calculate the air gap 
flux density (Latoufis et al., 2016). Owing to the poor 
corrosion resistance of rare-earth magnets, ferrite or other non-
rare earth magnets are used as magnetic material for axially 
magnetised PM generators. In addition, Jamali Arand & 
Ardebili (2016) used slanting magnets to reduce the cogging 
torque of a direct-drive wind turbine. 

There are few studies on lateral magnetising WPGs. Only 
Husain et al. discussed the design of WPGs for direct-drive 
lateral magnetisation, where flux-concentrating magnets were 

used. This increases the pole pitch, thus improving the WPG 
performance, torque density and power factor (Husain et al., 
2016). 

B. Wind Power Generators Based on Flux Switching 

In 1950, the first flux-switching WPG was proposed 
(Rauch & Johnson, 1955). It has the advantages of simple 
structure and high torque density. Its magnets and windings are 
mounted on the stator side, making this WPG easier to use in 
high-speed work environments. In addition, the amount of 
copper on the stator side is also greatly reduced. However, the 
traditional magnetic-flux-switching WPG uses a relatively 
large number of magnets, thus increasing manufacturing cost. 
To resolve this, new types of flux-switching WPGs have been 
proposed (Zhu & Chen, 2010; Chen et al., 2008; Thomas et al., 
2009). They can be mainly classified into three structural types: 
C-core, E-core and multi-tooth, as shown in Figs. 2 (b), (c) and 
(d), respectively. The main design principle of these WPGs is 
to reduce the number of magnets. As shown in Fig. 2 (b), this 
number is reduced to two magnets in Fig.2 (b) from four 
magnets in Fig. 2 (a). 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2.  a) Traditional structure, b) E-core structure, c) C-core structure, d) 
Multi-tooth structure 
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C. Reluctance Magnet Wind Power Generators 

These WPGs include switched-reluctance and PM 
reluctance generators. The structural design of traditional 
PMWPGs requires high-priced magnet materials, and some 
methods have been proposed to resolve this (Boldea et al., 
2014). For example, new WPGs use ferrite magnets or no 
magnets at all. Switched-reluctance WPGs do not use magnet 
design patterns (Cheng et al., 2009; Richter & Ferreira, 1995; 
Cardenas-Dobson et al., 1995; Radun et al., 1998). Mueller 
proposed a switched reluctance WPG with a power of 20 kW 
and a rotational speed of 100 rpm (Mueller, 2005). The rotor 
structure of a switched-reluctance WPG is of salient pole type, 
the material is completely composed of silicon steel sheets and 
the windings are mounted on the stator side. As the rotor does 
not use magnets and winding, its structure is simple; further, as 
no magnet is required, permanent magnet demagnetisation is 
not an issue. Switched-reluctance WPGs generally require no 
gearbox; thus, low cost, high reliability and high performance 
can be achieved. However, the control system of a switched 
reluctance WPG is not easy to design, and this is a 
disadvantage of this type of WPG. 

PM reluctance WPGs are an improvement of switched-
reluctance WPGs, as a magnet is added between the teeth on 
the stator side. Other than that, the structure of PM reluctance 
WPGs is the same as that of switched-reluctance WPGs. For 
example, the rotor side also adopts a salient pole structure, and 
the windings are only mounted on the stator side. Owing to the 
addition of the magnet, PM reluctance WPGs do not require 
exciting circuits and position sensors. In addition, the added 
magnet is on the stator side, and thus the efficiency and output 
power of PM reluctance WPGs are higher than those of 
switched-reluctance WPG. Nakamura & Ichinokura (2012) 
discussed the structural design of PM reluctance WPGs. They 
pointed out that if the shape of the magnet is changed, the 
torque ripple can be reduced. 

D. Wind Power Generators Based on Superconducting 

Materials 

For large wind turbines, superconductor WPGs represents 
the latest trend. Compared with other types, these WPGs have 
high efficiency, small weight, small size and low noise (Kalsi 
et al., 2004). As the coil is made of a superconductor, it is 
lightweight and has an air gap flux density of 1.5 to 2.0 T, 
which is twice as much as that of a conventional WPG. 
Superconductor materials were discovered as early as 1911, but 
at that time, they were at an experimental stage, and their 
properties were poorly understood. Stekly et al. (1966) 
designed the first superconductor WPGs. In this type of wind 
power generator, the superconductor coil is mounted on the 
rotor and stator side. In recent years, superconductor materials 
have been greatly developed. According to their critical 
temperature, superconductors can be divided into two major 
categories: high- and low-temperature (Wang et al., 2015; Wen 
et al., 2015). Niobium-Tin is a low-temperature 
superconducting material discovered in 1955. Around 1980, 
high-temperature superconducting materials (such as copper 
oxy-calcium-titanium ceramic materials) were discovered; they 
have the advantages of high-temperature resistance and low 
price. 

Karmaker et al. (2015) explored various structures of 
superconductor WPGs, including core type and rotor salient 
pole as well as rotor non-salient pole structures. It has been 
demonstrated through experiments that the salient pole 
structure has satisfactory performance, and its price is 
relatively low. Moreover, a 12 MW radial magnetising direct-
drive superconductor WPG was designed and tested for 
distinguishing the differences between high-temperature and 
low-temperature conductor materials on the rotor side (Wang et 
al., 2015). 

Although high-temperature superconducting WPGs have 
several advantages, they are costly, heavy and bulky. In 
addition, as high-temperature superconductor materials are 
expensive, there are still no mature products on the market. 
Currently, low-temperature superconductor materials are still 
the mainstream. 

E. Summary 

In summary, there are several issues to be considered in 
WPG design, including low cost, high efficiency and high 
reliability. High cost WPGs are difficult to survive on the 
market. Table 1 presents a comparison of the characteristics of 
various WPG configurations. It can be seen that most 
superconducting WPGs have a competitive advantage, but their 
cost is excessively high. SRGs have the advantages of low cost, 
simple structure and high efficiency, but their main 
disadvantage is their large size. Currently, the mainstream of 
WPGs is PMSGs, but they are complicated and costly. 
Therefore, there is still room for improvement. 

 

TABLE I.  PERFORMANCE COMPARISON OF VARIOIUS TYPES 

OF WPGS 

 PMSG SRG PMRG SCWPG FSPMG 

Cost* High Low Medium Very High Medium 

Structure Complex Simple Medium Medium Complex 

Size Large 
Extremely 

Large 
Little 
Small 

Small Large 

Efficiency 

(%) 

High 

(92- 97)** 

High 

(95)*** 

High 

(98)**** 

Extremely 

High 

(~100)***** 

High 

(94)****** 

*: Costs are basically compared by prices of construal materials, excluding the costs of maintenance and 
the factor of running life.(Moné et al., 2017; Nyanteh et al,. 2015) 

**: https://www.mdpi.com/1996-1073/13/4/1004/pdf 
***: https://kknews.cc/zh-tw/car/2bm58n9.html 

****: https://ir.nctu.edu.tw/bitstream/11536/44747/1/459001.pdf 
*****: https://www.chainnews.com/zh-hant/articles/138301400408.htm 

******: http://ir.lib.ntust.edu.tw/bitstream/987654321/14819/1/NSC98-2221-E011-148.pdf 

 
IV. METHODS FOR IMPROVING THE PERFORMANCE OF 

WIND POWER GENERATORS 

Different types of WPGs have been designed with different 
considerations, such as maintenance cost, power conversion 
and matching with mechanical systems. The electrical 
performance of WPGs can be assessed in terms of output 
power, power generation efficiency, cogging torque, torque 
ripple, reliability, cost and corrosion. Therefore, in the design 
of a WPG, these aspects should be considered. In this section, 
we will explore the improvement of various characteristics of 
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WPGs by changing their structure and materials. Corrosion and 
wind strength are special design factors for offshore wind 
turbines. 

A. Efficiency 

Efficiency is a major consideration in the structural design 
of WPGs. In Oh et al. (2014), a new type of laterally 
magnetised PM reluctance WPG was proposed. It is matched 
with a stator-side U-shaped iron core to reduce the magnetic 
flux path. However, high manufacturing cost is a major 
drawback of these WPGs. In that study, the structure of the 
improved rotor was also used to increase the efficiency of wind 
turbine power generation. Power generation efficiency can be 
improved by changing the pole number and pitch factor of the 
rotor (Shao et al., 2017). Regarding the structure of the outer 
rotor of PMWPGs, the E-limit difference method was used in 
Rastogi et al. (2016) to improve power generation efficiency, 
and the finite element method was employed to verify the 
improvement; according to the simulation results, the weight 
and loss of the WPG were significantly improved after the 
optimised method was applied. Fractional-slot concentrated 
winding PMWPGs can be tested using different types of 
magnets and different combinations of slot numbers (Sergeant 
& Bossche, 2014). The results demonstrate that WPGs using 
ferrite magnets are less efficient than WPGs using rare-earth 
magnets. Husain et al. improved the efficiency of laterally 
magnetised PMWPGs by testing different combinations of slot 
numbers. Most superconductor WPGs are of direct-drive type, 
and owing to the combination of power converters, efficiency 
is reduced and the cost of the entire system increases. To 
resolve these problems, Liu et al. proposed generators with 
superconductor coils, in which central and distributive 
windings are used to determine the final winding so that power 
generation efficiency may be improved (Liu, et al., 2017). 

From the above discussion, the methods for improving the 
efficiency of a WPG from the perspective of structural design 
include changing the number of poles and the pitch of the rotor, 
fractional-slots with concentrated windings, changing the 
number of slots and changing the magnetic materials. 

B. Cogging Torque 

Cogging torque occurs in a WPG with a PM structure, such 
as a PM generator. The reason for this is the interaction 
between the rotor side magnet and the stator side groove 
(Bianchi & Bolognani, 2002). Excessive cogging torque can 
cause mechanical shock and noise. Therefore, it is necessary to 
minimise the cogging torque at the design stage. 

Cogging torque can be reduced by increasing the number of 
phases. Ichinokura et al. (2006) pointed out that three-phase 
PM reluctance WPGs have lower cogging torque than single-
phase PM reluctance WPGs. In Huang et al. (2017), a two-
stator superconductor WPG with centralised winding was 
proposed, and the cogging torque of the rotor was reduced by 
changing the shape of the rotor magnet. The combination of the 
number of slots and poles is another factor that may affect the 
cogging torque of the turn. Chirca et al. (2016) proposed that 
the poles of 20 rotors and 21 stators in a PMWPG can reduce 
the cogging torque and achieve the desired torque. The 
centrifugal force of the rotor will also affect the cogging 

torque. If the centrifugal force of the cogging rotor is overly 
large, the torque will be relatively increased. Hsieh & Yeh 
(2013) studied the effect of the centrifugal force of the 
PMWPG’s rotor. The structural design of the inclined groove 
can also reduce the cogging torque of a WPG. This was 
discussed in Kudrjavtsev et al. (2017). Arafat et al. (2016a) 
discussed the design of a PMWPG’s internal rotor. The study 
pointed out that to achieve smooth rotation in low-speed 
WPGs, the cogging torque should be reduced at the design 
stage. Therefore, in that study, the cogging torque was reduced 
by using a fractional groove. In addition, Arafat et al. reduced 
the cogging torque by changing the groove shape and using a 
fractional groove. This also improved efficiency (Arafat et al., 
2016b). 

According to the above discussion, reducing the cogging 
torque of a WPG is an important consideration in the design of 
wind turbines. The related methods include changing the shape 
of the rotor magnet, the number of slots, the centrifugal force 
of the rotor, the structure of the inclined groove and using 
fractional slots. 

C. Reliability 

Improving the reliability of WPGs is also an important 
element in the design of wind turbines. Higher reliability 
implies longer life and lower maintenance cost. Most 
superconductor WPGs are equipped with a cooling system, and 
their coils are connected in series. However, if one of the coils 
fails, it will affect the overall function. Therefore, in Go et al. 
(2017), it was proposed that each coil be equipped with its own 
independent cooling system, so that a dysfunction of a coil will 
not affect other coils. In Yang et al. (2016), a superconductor 
WPG cooling-free system was proposed. This design can 
improve the reliability of the WPG, but its structure is 
considerably more complicated than that of general 
superconductor WPGs. In addition, Melcescu et al. (2017) 
proposed a WPG with dual-rotor design that consists of a 
PMWPG and an induction machine. This type of wind turbine 
can increase the conversion efficiency between energy and 
power, and system reliability is improved because it is not 
necessary to use a slip ring and a brush. 

D. Cost 

Low-cost wind turbines are more competitive. Nyanteh et 
al. (2015) proposed a new type of 4X conductor material, 
namely, beryllium copper oxide (YBCO), which is used to 
increase the current density and reduce the cost of high-
temperature superconductor materials, thereby reducing 
manufacturing cost. These materials can improve the 
performance of the original conductor. The current density of 
the new conductor is four times as high as that of the original 
conductor, hence the term ‘4X conductor’. 

To reduce the cost of the magnetic material, an effective 
method is to use AlNiCo magnets instead of rare-earth 
magnets. Faiz et al. (2016) proposed a structural design of a 
magnetic-flux-concentrated rotor that not only resolves the 
problem of demagnetisation of AlNiCo magnets but also 
reduces manufacturing cost. Structural optimisation is 
indispensable for achieving better WPG performance. 
Almandoz et al. (2016) pointed out that the amount of 
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magnetic material can be reduced using optimisation tools. 
Latoufis et al. (2016) also indicated that the production cost of 
axial-flux PMWPGs can be effectively reduced if ferrite 
magnets are used instead of rare-earth magnets. In addition, 
Husain et al. (2016) also proposed that transverse PMWPGs 
use ferrite magnets instead of the original rare-earth magnets, 
thereby reducing manufacturing cost. 

In summary, the methods for reducing the cost of WPGs 
include using lower-cost magnetic materials, improving the 
current carrying density by coil conductors, improving the 
rotor structure design and optimising the design by using 
optimisation software. 

E. Output Power 

If the output power of a WPG is increased, its performance 
is improved. It has been demonstrated that the windings can be 
changed to increase the phase voltage and output power of a 
WPG, as in, for example, the dual field winding (Park et al., 
2015). Dual field winding refers to the original coil being split 
into two parts, one on the inner stator side and the other on the 
outer stator side; the inner stator is inside the rotor, and the 
outer stator is outside the rotor. However, such WPG structures 
are more complex, and thus additional frictional loss is 
inevitable. 

In conventional flux-switching WPG, certain silicon steel 
sheets cannot be used efficiently, thus causing magnetic 
saturation of the teeth. To alleviate this, it has been proposed 
that the magnet should be placed on the inner stator side 
instead of the outer stator side. In Chirca et al. (2016), the 
magnetic flux on the rotor side of a radiating PMWPG was 
more concentrated, thus providing more space for additional 
magnets to increase their power density. 

F. Torque Ripple 

Cogging torque can cause noise and vibration. In Dhifli et 
al. (2016a) and Dhifli et al. (2016b), the quasi-3D finite 
element method was used to assess the performance of WPGs. 
These studies indicate that torque ripple can be reduced and 
torque can be increased by optimising the tooth width. Saeed et 
al. (2016) proposed a flux-switched WPG with dual-rotor and 
multi-tooth structure that is designed to reduce torque ripple. 
Moreover, a PM reluctance WPG with stacked structure was 
proposed to reduce the cogging torque (Melcescu et al., 2017). 
The original steel sheet on the stator side was cut into three 
equal parts along the bearing and the bearings were strung 
together. In that study, the shape of the rotor-side magnetic 
poles was also changed. The results demonstrate that torque 
ripple can be further reduced. 

G. Corrosion 

The rare-earth magnets used in PMWPGs are susceptible to 
corrosion. There are generally two different methods for 
alleviating this: applying a corrosion-resistant material on the 
surface of the magnet, and using a ferrite magnet because this 
type of magnet has satisfactory corrosion resistance. In 

Eriksson & Bernhoff (2012), the latter was used to resolve the 
problem of magnet corrosion in PMWPGs. 

 

V. METHODS AND TOOLS FOR STRUCTURAL DESIGN OF 

WPGS 

Effective analytical methods and tools are required in the 
design of WPG structures. Two methods are commonly used to 
analyse WPG performance, namely, Magnetic Circuit Analysis 
(MCA) and Finite Element Analysis (FEA). The former is 
rough and inaccurate. The construction of the equivalent 
magnetic circuit is used to obtain a rough design outline, and 
for beginners, this method is simple and easy to use. However, 
it is highly important to obtain accurate simulations for WPG 
design. FEA can obtain relatively accurate calculation results, 
but its shortcoming is that it is computationally expensive. If 
the stator and rotor structure of a WPG are symmetrical, 2D 
FEA may be used; otherwise, 3D FEA is used. 

A large number of commercial simulation software 
packages are available that provide tools for WPG structural 
analysis, such as SPEED, PSIM, Flux, ANSYS and JMAG. 
With the development of these tools, users need not write 
programs to analyse the performance of WPGs, thus greatly 
facilitating the analysis process.  

In addition, we suggest the use of experimental data to 
verify the accuracy of the analytical results, which can be used 
as a criterion to select 2D or 3D FEA. The general steps for 
conducting experiments first focus on the analysis of design 
factors, such as stress, strain, vibration, internal force and 
reaction force of the components, by which discover whether 
there are major operational problems caused by component 
interferences in the system. If there is no problem with the 
collocation of all designed components, the prototype 
composed of which can then perform performance tests, such 
as operating life, fatigue resistance, power generation 
efficiency, as well as harsh environment and accelerated life 
tests. Basically, only designed products or machines that have 
undergone experimental certification are eligible for 
commercialization and mass production. 

 

VI. CONCLUSIONS 

We discussed the structural design of the main body of 
WPGs. We focused on important issues to be considered in the 
design of the WPG structure, including the comparison of 
magnet materials, the consideration of different stator and rotor 
structures, and the improvement of the performance of WPGs. 
Some possible structural designs were identified to improve 
WPG efficiency, reduce cogging torque, reduce manufacturing 
costs, increase output power, reduce torque ripple, as well as 
other performance improvements. Through this discussion, we 
can understand the key points of WPG structural design, thus 
improving the overall efficiency of wind turbines.
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