

22

International Journal of

Science and Engineering Investigations vol. 9, issue 103, August 2020

ISSN: 2251-8843 Received on August 6, 2020

Evolutionary Training of Autoencoders by Differential

Evolution

Hidehiko Okada

Faculty of Information Science and Engineering, Kyoto Sangyo University
(hidehiko@cc.kyoto-su.ac.jp)

Abstract- In this paper, the author experimentally evaluates the
ability of Differential Evolution (DE) algorithm in evolutionary
training of autoencoders. DE is an instance of evolutionary
algorithms. An autoencoder is a component of a deep neural
network known as a stacked autoencoder. Optimization of
neural networks by means of evolutionary algorithms is called
neuroevolution. Weights and biases in an autoencoder are
optimized by DE so that the autoencoder can precisely
reconstruct its input data. A dataset of handwritten digits is
used in the experiment. The result showed that DE could
evolve autoencoders that reconstructed the training and test
data well. The result is then compared with previous
experimental results by Evolution Strategy (ES), Genetic
Algorithm (GA) and Particle Swarm Optimization (PSO), in
order to investigate whether DE is better than those three
algorithms on the task. The comparison revealed that DE could
train autoencoders significantly better than GA, but not
significantly better than either PSO or ES. Training error
curves illustrated the efficiency of DE in finding good
solutions. DE could make the error smaller than 8% much
earlier than PSO, ES and GA.

Keywords- Neural Network, Autoencoder, Evolutionary

Algorithm, Optimization

I. INTRODUCTION

Deep neural networks and their learning algorithms have
been actively researched recently [1-14]. A stacked
autoencoder is a kind of the deep neural network, where an
autoencoder is a kind of layered feed forward neural networks
[1,7,8]. An autoencoder can be trained by the well-known back
propagation (BP) algorithm [15], but the training of neural
networks by the BP algorithm is likely to get stuck in an
undesirable local minimum because the algorithm is based on a
gradient decent method. Besides, several methods are proposed
for training neural networks by using evolutionary algorithms,
known as neuroevolution and evolutionary neural networks
[16,17]. An advantage of evolutionary algorithms over the BP
in training neural networks is that evolutionary algorithms can
globally search solutions well and thus the trained neural
networks are less likely to get stuck in an undesirable local
minimum [18-23]. Therefore, we can expect that evolutionary
algorithms contribute well to the training of autoencoders (and
thus stacked autoencoders).

The author previously reported experimental results by
Genetic Algorithm (GA) [24], Evolution Strategy (ES) [25]
and Particle Swarm Optimization [26]. It is known as the “no
free lunch” theorem that no single search method is able to find
a better solution than any other method does [27]. Thus,
various evolutionary methods should be compared for
investigating which method suits better and why. As an
alternative, Differential Evolution (DE) [28] is adopted in this
paper. This paper reports an experimental result by DE, and
compares it with the previously reported results by GA, ES and
PSO. The same dataset of handwritten digits is consistently
used in these experiments.

II. AUTOENCODER

An autoencoder [1,7,8] is a layered feed forward neural
network where the number of units in the output layer is the
same as that in the input layer. An autoencoder is trained to
output the same values as input values, in other words, to
reproduce their input data. Fig. 1 shows the topology of an
autoencoder adopted in this research. It has a single hidden
layer. Usually, the number of hidden units is smaller than those
of input (output) layer: dimensional input real vectors are
encoded (compressed) to () dimensional real vectors
between the input and hidden layers, and the dimensional
real vectors are decoded (decompressed) to the dimensional
real vectors between the hidden and output layers. Note that the
compression/decompression process is not lossless but lossy so
that the output vectors are not exactly be the same as the input
vectors. An autoencoder is trained to make the error between
the input and output vectors smaller.

Figure 1. Topology of an autoencoder in this research.

1 i… N…

1 j… M…

1 i… N…

Input

Hidden

Output

International Journal of Science and Engineering Investigations, Volume 9, Issue 103, August 2020 23

www.IJSEI.com Paper ID: 910320-05 ISSN: 2251-8843

The feed forward calculations in this autoencoder are the
same as those in the traditional three layered perceptron. The
following equations (1)-(5) show the calculations.

Input layer:

𝑜𝑢𝑡𝑖
(1)

= 𝑥𝑖 , 𝑖 = 1,2, … , (1)

Hidden layer:

𝑖𝑛𝑗
(2)

= 𝜃𝑗
(2)

+ ∑ 𝑤𝑖,𝑗
(2)

𝑖 𝑜𝑢𝑡𝑖
(1)

, 𝑗 = 1,2, … , (2)

𝑜𝑢𝑡𝑗
(2)

= 𝑓(𝑖𝑛𝑗
(2)

) , 𝑗 = 1,2, … , (3)

Output layer:

𝑖𝑛𝑖
(3)

= 𝜃𝑖
(3)

+ ∑ 𝑤𝑗,𝑖
(3)

𝑗 𝑜𝑢𝑡𝑗
(2)

, 𝑖 = 1,2,… , (4)

𝑜𝑢𝑡𝑖
(3)

= 𝑓(𝑖𝑛𝑖
(3)

), 𝑖 = 1,2, … , (5)

The symbols in (1)-(5) denote as follows:

𝑥𝑖 Input value to i-th input unit.

𝑜𝑢𝑡𝑖
(1)

 Output value from i-th input unit.

𝑖𝑛𝑗
(2)

 Input value to j-th hidden unit.

𝑤𝑖,𝑗
(2)

 Weight value from i-th input unit to j-th hidden unit.

𝜃𝑗
(2)

 Bias value of j-th hidden unit.

𝑜𝑢𝑡𝑗
(2)

 Output value from j-th hidden unit.

𝑖𝑛𝑖
(3)

 Input value to i-th output unit.

𝑤𝑗,𝑖
(3)

 Weight value from j-th hidden unit to i-th output unit.

𝜃𝑖
(3)

 Bias value of i-th output unit.

𝑜𝑢𝑡𝑖
(3)

 Output value from i-th output unit.

𝑓() is a unit activation function, where the sigmoidal one is
adopted in this research: 𝑓(𝑥) = 1 (1 +).

Suppose the training data are dimensional real vectors
and the number of the data is .

𝑿 = {𝒙𝑑}, 𝑑 = 1,2, … , (6)

𝒙𝑑 = (𝑥𝑑,1, 𝑥𝑑,2, … , 𝑥𝑑,𝑁) (7)

In (6), 𝑿 is the set of training data. Each 𝒙𝑑 in (7) is the -
dimensional real vector. An autoencoder is trained (i.e., values

of 𝑤𝑖,𝑗
(2)

, 𝜃𝑗
(2)

, 𝑤𝑗,𝑖
(3)

, and 𝜃𝑖
(3)

 are optimized) so that its output

values (𝑜𝑢𝑡𝑖
(3)

, 𝑖 = 1,2, … ,) become closer to its input values

(𝑥𝑑,𝑖 , 𝑖 = 1,2, … ,). In other words, the input value 𝑥𝑑,𝑖 is the

target for the output value 𝑜𝑢𝑡𝑖
(3)

. Thus, the error between 𝑥𝑑,𝑖

and 𝑜𝑢𝑡𝑖
(3)

 becomes smaller by optimizing the value of weights

and biases.

 𝑑 =
1

𝑁
∑ (𝑜𝑢𝑡𝑖

(3)
− 𝑥𝑑,𝑖)

2𝑁
𝑖=1 (8)

 =
1

𝐷
∑ 𝑑

𝐷
𝑑=1 (9)

 𝑑 in (8) denotes the error for 𝒙𝑑 (𝑑 1), and in
(9) denotes the average error over the entire training data 𝑿
(1).

III. EVOLUTIONARY TRAINING BY DIFFERENTIAL

EVOLUTION

Instead of the BP, DE is adopted as a training method of the
autoencoder in this research. DE is an instance of evolutionary
algorithms. Evolutionary algorithms are population-based
stochastic search algorithms, whereas the BP is a gradient-
based single-point search algorithm. Because of this difference,
evolutionary algorithms are better than the BP in searching
solutions globally. It was reported that evolutionary algorithms
could optimize neural networks better than the BP could [18-
23].

Optimization of neural networks by means of evolutionary
algorithms is called neuroevolution [16,17]. There are two
types of neuroevolution methods: (A) the topology of a neural
network (e.g., the number of hidden layers, the number of units
in each hidden layer) is fixed and the weights are optimized, or
(B) both of the topology and the weights are optimized. In this
paper, the author adopts the former method. The autoencoder
with the topology shown in Fig. 1 includes 2 (= +
) weights and + biases. Thus, the autoencoder
includes 2 + + parameters in total. Let us denote
 = 2 + + . These parameters forms an dimensional
real vector, = (1 , 2, … ,), and the vector is treated as the
genotype in an evolutionary/swarm algorithm. The phenotype
in the algorithm is the autoencoder in Fig. 1. Evolutionary
operators are applied to optimize so that the error becomes
smaller. The error value in (9) is calculated with the training
data and the output values of an autoencoder.

The process of training neural networks by DE is as follows
in this paper:

Step1: Initialization

Step2: Evaluation

Step3: Conditional Termination

Step4: Reproduction

Step5: Evaluation

Step6: Selection

Step7: Goto Step3

In Step1, 1, 2, … , are initialized as random values,

where denotes the population size. denotes the genotype

vector of the k-th parent in the population, i.e., =
(1

 , 2
 , … ,

), = 1,2, … , . Population size is given. The
domain range of each genotype value should be neither too
large nor too small in this research because the value is used as
a weight or bias value in a neural network.

In Step 2, fitness of each parent , = 1,2, , is
evaluated. In this research, the fitness is based on the error in
(9). A parent with a smaller error fits better. In Step 3, the loop
of evolutionary process is finished if a given termination
condition is met. In this research, the loop is finished if the
loop counter reaches to a given number.

In Step 4, new offsprings are created by applying the
crossover operator to the parents and donors. The donors are
created before the crossover. The reproduction method called

“DE/rand/1/bin” is adopted here. denotes the genotype

International Journal of Science and Engineering Investigations, Volume 9, Issue 103, August 2020 24

www.IJSEI.com Paper ID: 910320-05 ISSN: 2251-8843

vectors of the k-th donor. = (1
 , 2

 , … ,
), = 1,2, … ,

 is determined as follows.

1. From the parents (1, 2, … ,) three parents , ,
are randomly selected where .

2. 𝑖
 = 𝑖

 + (𝑖
 − 𝑖

), 𝑖 = 1,2, , , where is a
preset scaling factor.

 denotes the genotype vectors of the k-th offspring.

 = (1
 , 2

 , … ,
), = 1,2, … , is determined as

follows. 𝑗
 = 𝑗

 𝑖𝑓 𝑜 𝑗 = , else 𝑗
 = 𝑗

 , 𝑗 =
1,2, … , , where is a uniform random rumber, 1 ,
 is a preset crossover rate, 1, and is a uniform
random integer, {1,2, , } . is sampled for each
𝑗 = 1,2, … , , and is sampled for each = 1,2, … , .

In Step 5, fitness of each offspring , = 1,2, … , is

evaluated in the same manner as each parent , = 1,2, … , .

In Step6, the better of parent or offspring is selected as a

new parent , = 1,2, … , .

IV. EXPERIMENT

This section reports an experimental study in which a
dataset of handwritten digits is used as training data. The
dataset is the Optical Recognition of Handwritten Digits Data
Set which is available in the UC Irvine Machine Learning
Repository. [29]

For each of the 10 digits (0,1,…,9), 20 samples are

randomly extracted from the data file optdigits.tra.

Thus, the total number of the sampled data is 1 2 = 2 .
A half of the 200 data is used as the training data, and the
remaining half is used as the test data. Each data consists of
 = pixels and a pixel is valued with either of 0,1,…,16
(0: white, 16: black). In this experiment, the pixel values are
normalized to a real value within the interval , 1 by
dividing the values by 16.0. Figs. 2 and 3 visually show the
training and test data respectively.

Figure 2. Training data in this experiment

Figure 3. Test data in this experiment

The numbers of units in the input and output layers are 64,
because each training data consists of 64 values. The number
of hidden units is set to 32, i.e., 50% of the input/output units.
Thus, in this experiment, an autoencoder has 64 32+32 64
weights and 32+64 biases in total, and the genotype is a 4192
dimensional real vector.

Parameter values of DE are experimentally set as follows:

 Population size : 100.

 Limit of generations: 10,000.

 Number of evaluations: 100 10,000 = 1,000,000

 Genotype values: within the interval − , .
 Initial genotype values: randomly sampled from the

standard normal distribution (,1).

 Scaling factor = 1.

 Crossover rate = .

The values of error in (9) were observed for 10 runs.

Table 1(a) shows the best (smallest), the worst (largest), and
the average of the 10 training error values. Fig. 4 shows the
outputs by the trained autoencoder with the best error of 7.78%.
The trained autoencoder reconstructs each of the 100 input
digits in Fig. 2 to the corresponding output digit in Fig. 4 (the
error between the corresponding input/output digits is 7.78%
per pixel in average).

If the trained autoencoders overfit to the training data, the
training error becomes small but the test error becomes much
larger. Table 1(b) shows the test errors, where the test data (Fig.
3) are input to the 10 trained autoencoders. The best one of the
10 trained autoencoders reconstructs each of the 100 input
digits in Fig. 3 to the corresponding output digit in Fig. 5,
where the error between the corresponding input/output digits
is 10.99% per pixel in average. Table 1 reveals that the test
errors are larger than the training errors but the differences are
small. Thus, DE did not make autoencoders overfit to the
training data.

International Journal of Science and Engineering Investigations, Volume 9, Issue 103, August 2020 25

www.IJSEI.com Paper ID: 910320-05 ISSN: 2251-8843

TABLE I. TRAINING AND TEST ERROS (%) BY DE.

 (a) training (b) test

 best worst average best worst average

DE 7.78 10.44 8.99 10.99 12.32 11.43

Figure 4. Output digits by the best autoencoder (reconstruction of input

digits in Fig. 2)

Figure 5. Output digits by the best autoencoder (reconstruction of input
digits in Fig. 3)

The author next compares the result by DE with those by
other algorithms, ES, GA and PSO, in order to investigate
whether DE is better than those algorithms on this task. The
author previously reported experimental results by the three
algorithms [24-26], where the same training and test data were
adopted. In the same manner described in this paper for DE,
each of the three algorithms was applied to evolutionary
training of autoencoders. The values of error in (9) were
observed for 10 runs with each algorithm. Table 2 shows the
training and test errors in the same manner as in table 1. Firstly,
the average training error by DE (8.99%) is smaller than the
corresponding errors by ES (9.07%) and GA (9.67%), but is
larger than the corresponding error by PSO (8.69%). Secondly,
the average test error by DE (11.43%) is smaller than the
corresponding error by GA (12.63%), but is larger than the
corresponding errors by ES (11.23%) and PSO (11.18%). The
differences of training/test errors are statistically tested by
Wilcoxon rank-sum test.

 The training errors by DE were significantly smaller than
those by GA (p=0.03151), but they were not significantly
smaller than those by either ES (p=0.5147) or PSO
(p=0.7821).

 The test errors by DE were significantly smaller than those
by GA (p=2.436 1), but they were not significantly
smaller than those by either ES (p=0.8601) or PSO
(p=0.7594).

Thus, DE could train significantly better than GA but not
than either ES or PSO.

TABLE II. TRAINING AND TEST ERROS (%) BY PSO, ES AND GA [26].

 (a) training (b) test

 best worst average best worst average

PSO 7.87 9.31 8.69 10.55 11.65 11.18

ES 8.26 10.50 9.07 10.43 12.50 11.23

GA 8.42 11.34 9.67 11.54 13.93 12.63

Fig. 6 illustrates the training error curves along with the
progress of evolutionary training (the number of evaluations).
Each curve shows errors in the best run among the 10 runs by
each algorithm.

Figure 6. Training errors by DE, PSO, ES and GA.

Fig. 6 revealed that,

 From 100,000 to 200,000 evaluations, the error by DE was
the largest, but,

 From 200,000 to 500,000 evaluations, the error by DE
decreased more quickly, and

 At 600,000 evaluations, the error by DE reached to a small
value which PSO could reach at 1,000,000 evaluations.

Thus, in the early stage, DE explored solutions more
globally than the other algorithms, and then DE could exploit
solutions more efficiently. This result shows the better ability
of DE in balancing explorations and exploitations. This ability

stems from the differential vector − in producing the

donor . In the early stage, the parents 1, 2, … , are
scattered in the search space so that the differential vector

International Journal of Science and Engineering Investigations, Volume 9, Issue 103, August 2020 26

www.IJSEI.com Paper ID: 910320-05 ISSN: 2251-8843

becomes larger. Therefore, the distance between the parent

and the offspring is also larger. Reversely, in the later stage,

the parents 1, 2, … , are gathered in smaller areas so that
the differential vector becomes smaller. Therefore, the distance

between the parent and the offspring is also smaller. The
idea of adopting differential vectors to the reproduction makes
DE a promising algorithm.

V. CONCLUSION AND FUTURE WORK

The author adopted DE to the evolutionary training of an
autoencoder. The experimental result with the data of
handwritten digits showed that DE contributed significantly
better than GA but not significantly better than PSO and ES.
The error curves illustrated the efficiency in finding good
solutions. DE could make the error smaller than 8% much
earlier than PSO, ES and GA.

The author will further evaluate, compare and improve the
abilities of other evolutionary/swarm algorithms and their
hybrids in the training of deep neural networks.

REFERENCES

[1] Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the
dimensionality of data with neural networks. Science, 313(5786), 504-
507.

[2] Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning
algorithm for deep belief nets. Neural Computation, 18(7), 1527-1554.

[3] Boureau, Y. L., & Cun, Y. L. (2008). Sparse feature learning for deep
belief networks. Advances in Neural Information Processing Systems,
1185-1192.

[4] Sutskever, I., & Hinton, G. E. (2008). Deep, narrow sigmoid belief
networks are universal approximators. Neural Computation, 20(11),
2629-2636.

[5] Bengio, Y. (2009). Learning deep architectures for AI. Foundations and
Trends in Machine Learning, 2(1), 1-127.

[6] Larochelle, H., Bengio, Y., Louradour, J., & Lamblin, P. (2009).
Exploring strategies for training deep neural networks. Journal of
Machine Learning Research, 10(Jan), 1-40.

[7] Tan, C. C., & Eswaran, C. (2010). Autoencoder neural networks: a
performance study based on image reconstruction, recognition and
compression. Lambert Academic Publishing.

[8] Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P. A.
(2010). Stacked denoising autoencoders: learning useful representations
in a deep network with a local denoising criterion. Journal of Machine
Learning Research, 11(Dec), 3371-3408.

[9] Salakhutdinov, R., & Hinton, G. (2012). An efficient learning procedure
for deep Boltzmann machines. Neural Computation, 24(8), 1967-2006.

[10] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet
classification with deep convolutional neural networks. Advances in
Neural Information Processing Systems, 1097-1105.

[11] Bengio, Y., Courville, A., & Vincent, P. (2013). Representation
learning: a review and new perspectives. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 35(8), 1798-1828.

[12] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature,
521(7553), 436-444.

[13] Schmidhuber, J. (2015). Deep learning in neural networks: an overview.
Neural Networks, 61, 85-117.

[14] Zhang, S., Choromanska, A. E., & LeCun, Y. (2015). Deep learning
with elastic averaging SGD. Advances in Neural Information Processing
Systems, 685-693.

[15] Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1986). Learning
representations by back-propagating errors. Nature, 323(6088), 533-538.

[16] Yao, X. (1999). Evolving artificial neural networks. Proceedings of the
IEEE, 87(9), 1423-1447.

[17] Floreano, D., Dürr, P., & Mattiussi, C. (2008). Neuroevolution: from
architectures to learning. Evolutionary Intelligence, 1(1), 47-62.

[18] Montana, D. J., & Davis, L. (1989). Training feedforward neural
networks using genetic algorithms. IJCAI, 89, 762-767.

[19] Sexton, R. S., Dorsey, R. E., & Johnson, J. D. (1998). Toward global
optimization of neural networks: a comparison of the genetic algorithm
and backpropagation. Decision Support Systems, 22(2), 171-185.

[20] Sexton, R. S., & Gupta, J. N. (2000). Comparative evaluation of genetic
algorithm and backpropagation for training neural networks. Information
Sciences, 129(1), 45-59.

[21] Örkcü, H. H., & Bal, H. (2011). Comparing performances of
backpropagation and genetic algorithms in the data classification. Expert
Systems with Applications, 38(4), 3703-3709.

[22] Joy, C. U. (2011). Comparing the performance of backpropagation
algorithm and genetic algorithms in pattern recognition problems.
International Journal of Computer Information Systems, 2(5), 7-12.

[23] Che, Z. G., Chiang, T. A., & Che, Z. H. (2011). Feed-forward neural
networks training: a comparison between genetic algorithm and back-
propagation learning algorithm. International Journal of Innovative
Computing, Information and Control, 7(10), 5839-5850.

[24] Okada, H. (2017). Neuroevolution of autoencoders by genetic algorithm,
International Journal of Science and Engineering Investigations (IJSEI),
6(65), 127-131.

[25] Okada, H. (2018). Comparison of ES and GA applied to neuroevolution
of autoencoders, International Journal of Science and Engineering
Investigations (IJSEI), 7(80), 1-5.

[26] Okada, H. (2020). Evolutionary training of autoencoders by particle
swarm optimization, International Journal of Science and Engineering
Investigations (IJSEI), 9(97), 29-33.

[27] Wolpert, D.H., & Macready, W.G. (1997). No free lunch theorems for
optimization. IEEE Transactions on Evolutionary Computation, 1(1),
67-82.

[28] Storn, R., & Price, K. (1997). Differential evolution – a simple and
efficient heuristic for global optimization over continuous spaces.
Journal of Global Optimization 11, 341–359.

[29] https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwri
tten+Digits

How to Cite this Article:

Okada, H. (2020). Evolutionary Training of

Autoencoders by Differential Evolution. International
Journal of Science and Engineering Investigations

(IJSEI), 9(103), 22-26. http://www.ijsei.com/papers/ijsei-

910320-05.pdf

	I. Introduction
	II. Autoencoder
	III. Evolutionary Training by Differential Evolution
	IV. Experiment
	V. Conclusion and Future Work
	References

