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Abstract- In this paper, the author experimentally evaluates the 
ability of Differential Evolution (DE) algorithm in evolutionary 
training of autoencoders. DE is an instance of evolutionary 
algorithms. An autoencoder is a component of a deep neural 
network known as a stacked autoencoder. Optimization of 
neural networks by means of evolutionary algorithms is called 
neuroevolution. Weights and biases in an autoencoder are 
optimized by DE so that the autoencoder can precisely 
reconstruct its input data. A dataset of handwritten digits is 
used in the experiment. The result showed that DE could 
evolve autoencoders that reconstructed the training and test 
data well. The result is then compared with previous 
experimental results by Evolution Strategy (ES), Genetic 
Algorithm (GA) and Particle Swarm Optimization (PSO), in 
order to investigate whether DE is better than those three 
algorithms on the task. The comparison revealed that DE could 
train autoencoders significantly better than GA, but not 
significantly better than either PSO or ES. Training error 
curves illustrated the efficiency of DE in finding good 
solutions. DE could make the error smaller than 8% much 
earlier than PSO, ES and GA.  

Keywords- Neural Network, Autoencoder, Evolutionary 

Algorithm, Optimization 

 

I. INTRODUCTION 

Deep neural networks and their learning algorithms have 
been actively researched recently [1-14]. A stacked 
autoencoder is a kind of the deep neural network, where an 
autoencoder is a kind of layered feed forward neural networks 
[1,7,8]. An autoencoder can be trained by the well-known back 
propagation (BP) algorithm [15], but the training of neural 
networks by the BP algorithm is likely to get stuck in an 
undesirable local minimum because the algorithm is based on a 
gradient decent method. Besides, several methods are proposed 
for training neural networks by using evolutionary algorithms, 
known as neuroevolution and evolutionary neural networks 
[16,17]. An advantage of evolutionary algorithms over the BP 
in training neural networks is that evolutionary algorithms can 
globally search solutions well and thus the trained neural 
networks are less likely to get stuck in an undesirable local 
minimum [18-23]. Therefore, we can expect that evolutionary 
algorithms contribute well to the training of autoencoders (and 
thus stacked autoencoders).  

The author previously reported experimental results by 
Genetic Algorithm (GA) [24], Evolution Strategy (ES) [25] 
and Particle Swarm Optimization [26]. It is known as the “no 
free lunch” theorem that no single search method is able to find 
a better solution than any other method does [27]. Thus, 
various evolutionary methods should be compared for 
investigating which method suits better and why. As an 
alternative, Differential Evolution (DE) [28] is adopted in this 
paper. This paper reports an experimental result by DE, and 
compares it with the previously reported results by GA, ES and 
PSO. The same dataset of handwritten digits is consistently 
used in these experiments. 

 

II. AUTOENCODER 

An autoencoder [1,7,8] is a layered feed forward neural 
network where the number of units in the output layer is the 
same as that in the input layer. An autoencoder is trained to 
output the same values as input values, in other words, to 
reproduce their input data. Fig. 1 shows the topology of an 
autoencoder adopted in this research. It has a single hidden 
layer. Usually, the number of hidden units is smaller than those 
of input (output) layer:   dimensional input real vectors are 
encoded (compressed) to  (  ) dimensional real vectors 
between the input and hidden layers, and the   dimensional 
real vectors are decoded (decompressed) to the   dimensional 
real vectors between the hidden and output layers. Note that the 
compression/decompression process is not lossless but lossy so 
that the output vectors are not exactly be the same as the input 
vectors. An autoencoder is trained to make the error between 
the input and output vectors smaller. 

 

 

Figure 1.  Topology of an autoencoder in this research.
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The feed forward calculations in this autoencoder are the 
same as those in the traditional three layered perceptron. The 
following equations (1)-(5) show the calculations.  

Input layer:  

𝑜𝑢𝑡𝑖
(1)

= 𝑥𝑖 , 𝑖 = 1,2, … ,   (1) 

Hidden layer:  

𝑖𝑛𝑗
(2)

= 𝜃𝑗
(2)

+ ∑ 𝑤𝑖,𝑗
(2)

𝑖 𝑜𝑢𝑡𝑖
(1)

, 𝑗 = 1,2, … ,   (2) 

𝑜𝑢𝑡𝑗
(2)

= 𝑓(𝑖𝑛𝑗
(2)

) , 𝑗 = 1,2, … ,  (3) 

Output layer:  

𝑖𝑛𝑖
(3)

= 𝜃𝑖
(3)

+ ∑ 𝑤𝑗,𝑖
(3)

𝑗 𝑜𝑢𝑡𝑗
(2)

, 𝑖 = 1,2,… ,    (4) 

𝑜𝑢𝑡𝑖
(3)

= 𝑓(𝑖𝑛𝑖
(3)

), 𝑖 = 1,2, … ,   (5) 

 

The symbols in (1)-(5) denote as follows:  

𝑥𝑖 Input value to i-th input unit. 

𝑜𝑢𝑡𝑖
(1)

 Output value from i-th input unit. 

𝑖𝑛𝑗
(2)

 Input value to j-th hidden unit. 

𝑤𝑖,𝑗
(2)

 Weight value from i-th input unit to j-th hidden unit. 

𝜃𝑗
(2)

 Bias value of j-th hidden unit. 

𝑜𝑢𝑡𝑗
(2)

 Output value from j-th hidden unit. 

𝑖𝑛𝑖
(3)

 Input value to i-th output unit. 

𝑤𝑗,𝑖
(3)

 Weight value from j-th hidden unit to i-th output unit. 

𝜃𝑖
(3)

 Bias value of i-th output unit. 

𝑜𝑢𝑡𝑖
(3)

 Output value from i-th output unit. 

𝑓() is a unit activation function, where the sigmoidal one is 
adopted in this research: 𝑓(𝑥) = 1 (1 +    ). 

Suppose the training data are   dimensional real vectors 
and the number of the data is  .  

𝑿 = {𝒙𝑑}, 𝑑 = 1,2, … ,   (6) 

𝒙𝑑 = (𝑥𝑑,1, 𝑥𝑑,2, … , 𝑥𝑑,𝑁) (7) 

In (6), 𝑿 is the set of training data. Each 𝒙𝑑 in (7) is the  -
dimensional real vector. An autoencoder is trained (i.e., values 

of 𝑤𝑖,𝑗
(2)

, 𝜃𝑗
(2)

, 𝑤𝑗,𝑖
(3)

, and 𝜃𝑖
(3)

 are optimized) so that its output 

values (𝑜𝑢𝑡𝑖
(3)

, 𝑖 = 1,2, … ,  ) become closer to its input values 

(𝑥𝑑,𝑖 , 𝑖 = 1,2, … ,  ). In other words, the input value 𝑥𝑑,𝑖 is the 

target for the output value 𝑜𝑢𝑡𝑖
(3)

. Thus, the error between 𝑥𝑑,𝑖 

and 𝑜𝑢𝑡𝑖
(3)

 becomes smaller by optimizing the value of weights 

and biases.  

 𝑑 =
1

𝑁
∑ (𝑜𝑢𝑡𝑖

(3)
− 𝑥𝑑,𝑖)

2𝑁
𝑖=1   (8) 

 =
1

𝐷
∑  𝑑

𝐷
𝑑=1   (9) 

 𝑑 in (8) denotes the error for 𝒙𝑑 (    𝑑  1   ), and   in 
(9) denotes the average error over the entire training data 𝑿 
(     1   ). 

III. EVOLUTIONARY TRAINING BY DIFFERENTIAL 

EVOLUTION 

Instead of the BP, DE is adopted as a training method of the 
autoencoder in this research. DE is an instance of evolutionary 
algorithms. Evolutionary algorithms are population-based 
stochastic search algorithms, whereas the BP is a gradient-
based single-point search algorithm. Because of this difference, 
evolutionary algorithms are better than the BP in searching 
solutions globally. It was reported that evolutionary algorithms 
could optimize neural networks better than the BP could [18-
23].  

Optimization of neural networks by means of evolutionary 
algorithms is called neuroevolution [16,17]. There are two 
types of neuroevolution methods: (A) the topology of a neural 
network (e.g., the number of hidden layers, the number of units 
in each hidden layer) is fixed and the weights are optimized, or 
(B) both of the topology and the weights are optimized. In this 
paper, the author adopts the former method. The autoencoder 
with the topology shown in Fig. 1 includes 2   (=   +
  )  weights and  +   biases. Thus, the autoencoder 
includes 2  +  +   parameters in total. Let us denote 
 = 2  +  +  . These parameters forms an   dimensional 
real vector,  = ( 1 ,  2, … ,   ), and the vector is treated as the 
genotype in an evolutionary/swarm algorithm. The phenotype 
in the algorithm is the autoencoder in Fig. 1. Evolutionary 
operators are applied to optimize   so that the error becomes 
smaller. The error value   in (9) is calculated with the training 
data and the output values of an autoencoder. 

The process of training neural networks by DE is as follows 
in this paper: 

Step1: Initialization 

Step2: Evaluation 

Step3: Conditional Termination 

Step4: Reproduction 

Step5: Evaluation 

Step6: Selection 

Step7: Goto Step3 
 

In Step1,  1,  2, … ,    are initialized as random values, 

where   denotes the population size.    denotes the genotype 

vector of the k-th parent in the population, i.e.,   =
( 1

 ,  2
 , … ,   

 ),  = 1,2, … ,  . Population size   is given. The 
domain range of each genotype value should be neither too 
large nor too small in this research because the value is used as 
a weight or bias value in a neural network. 

In Step 2, fitness of each parent   ,  = 1,2,    ,   is 
evaluated. In this research, the fitness is based on the error in 
(9). A parent with a smaller error fits better. In Step 3, the loop 
of evolutionary process is finished if a given termination 
condition is met. In this research, the loop is finished if the 
loop counter reaches to a given number.  

In Step 4, new   offsprings are created by applying the 
crossover operator to the parents and donors. The donors are 
created before the crossover. The reproduction method called 

“DE/rand/1/bin” is adopted here.    denotes the genotype 
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vectors of the k-th donor.   = ( 1
 ,  2

 , … ,   
 ),  = 1,2, … ,    

   is determined as follows.  

1. From the   parents ( 1,  2, … ,   ) three parents   ,   ,    
are randomly selected where        . 

2.  𝑖
 =  𝑖

 +  ( 𝑖
 −  𝑖

 ), 𝑖 = 1,2,    ,  , where   is a 
preset scaling factor.  

   denotes the genotype vectors of the k-th offspring. 

  = ( 1
 ,  2

 , … ,   
 ),  = 1,2, … ,       is determined as 

follows.  𝑗
 =  𝑗

  𝑖𝑓      𝑜  𝑗 =  , else  𝑗
 =  𝑗

 ,  𝑗 =
1,2, … ,  ,  where   is a uniform random rumber,     1 , 
   is a preset crossover rate,      1, and   is a uniform 
random integer,   {1,2,    ,  } .   is sampled for each 
𝑗 = 1,2, … ,  , and   is sampled for each  = 1,2, … ,  . 

In Step 5, fitness of each offspring   ,  = 1,2, … ,   is 

evaluated in the same manner as each parent   ,  = 1,2, … ,  . 

In Step6, the better of parent    or offspring    is selected as a 

new parent   ,  = 1,2, … ,  .  

 

IV. EXPERIMENT 

This section reports an experimental study in which a 
dataset of handwritten digits is used as training data. The 
dataset is the Optical Recognition of Handwritten Digits Data 
Set which is available in the UC Irvine Machine Learning 
Repository. [29] 

For each of the 10 digits (0,1,…,9), 20 samples are 

randomly extracted from the data file optdigits.tra. 

Thus, the total number of the sampled data is 1  2 = 2  . 
A half of the 200 data is used as the training data, and the 
remaining half is used as the test data. Each data consists of 
   =    pixels and a pixel is valued with either of 0,1,…,16 
(0: white, 16: black). In this experiment, the pixel values are 
normalized to a real value within the interval     , 1    by 
dividing the values by 16.0. Figs. 2 and 3 visually show the 
training and test data respectively.  

 

 

Figure 2.  Training data in this experiment 

 

 

Figure 3.  Test data in this experiment 

 

The numbers of units in the input and output layers are 64, 
because each training data consists of 64 values. The number 
of hidden units is set to 32, i.e., 50% of the input/output units. 
Thus, in this experiment, an autoencoder has 64 32+32 64 
weights and 32+64 biases in total, and the genotype is a 4192 
dimensional real vector.  

Parameter values of DE are experimentally set as follows:  

 Population size  : 100. 

 Limit of generations: 10,000. 

 Number of evaluations: 100 10,000 = 1,000,000 

 Genotype values: within the interval  −   ,     . 
 Initial genotype values: randomly sampled from the 

standard normal distribution  ( ,1). 

 Scaling factor  =   1. 

 Crossover rate   =    . 

 
The values of error   in (9) were observed for 10 runs. 

Table 1(a) shows the best (smallest), the worst (largest), and 
the average of the 10 training error values. Fig. 4 shows the 
outputs by the trained autoencoder with the best error of 7.78%. 
The trained autoencoder reconstructs each of the 100 input 
digits in Fig. 2 to the corresponding output digit in Fig. 4 (the 
error between the corresponding input/output digits is 7.78% 
per pixel in average).  

If the trained autoencoders overfit to the training data, the 
training error becomes small but the test error becomes much 
larger. Table 1(b) shows the test errors, where the test data (Fig. 
3) are input to the 10 trained autoencoders. The best one of the 
10 trained autoencoders reconstructs each of the 100 input 
digits in Fig. 3 to the corresponding output digit in Fig. 5, 
where the error between the corresponding input/output digits 
is 10.99% per pixel in average. Table 1 reveals that the test 
errors are larger than the training errors but the differences are 
small. Thus, DE did not make autoencoders overfit to the 
training data.  
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TABLE I.  TRAINING AND TEST ERROS (%) BY DE. 

 (a) training (b) test 

 best worst average best worst average 

DE 7.78 10.44 8.99 10.99 12.32 11.43 

 

 

Figure 4.  Output digits by the best autoencoder (reconstruction of input 

digits in Fig. 2) 

 

 

Figure 5.  Output digits by the best autoencoder (reconstruction of input 
digits in Fig. 3) 

 

The author next compares the result by DE with those by 
other algorithms, ES, GA and PSO, in order to investigate 
whether DE is better than those algorithms on this task. The 
author previously reported experimental results by the three 
algorithms [24-26], where the same training and test data were 
adopted. In the same manner described in this paper for DE, 
each of the three algorithms was applied to evolutionary 
training of autoencoders. The values of error   in (9) were 
observed for 10 runs with each algorithm. Table 2 shows the 
training and test errors in the same manner as in table 1. Firstly, 
the average training error by DE (8.99%) is smaller than the 
corresponding errors by ES (9.07%) and GA (9.67%), but is 
larger than the corresponding error by PSO (8.69%). Secondly, 
the average test error by DE (11.43%) is smaller than the 
corresponding error by GA (12.63%), but is larger than the 
corresponding errors by ES (11.23%) and PSO (11.18%). The 
differences of training/test errors are statistically tested by 
Wilcoxon rank-sum test.  

 The training errors by DE were significantly smaller than 
those by GA (p=0.03151), but they were not significantly 
smaller than those by either ES (p=0.5147) or PSO 
(p=0.7821). 

 The test errors by DE were significantly smaller than those 
by GA (p=2.436 1   ), but they were not significantly 
smaller than those by either ES (p=0.8601) or PSO 
(p=0.7594).  

Thus, DE could train significantly better than GA but not 
than either ES or PSO. 

 

TABLE II.  TRAINING AND TEST ERROS (%) BY PSO, ES AND GA [26]. 

 (a) training (b) test 

 best worst average best worst average 

PSO 7.87 9.31 8.69 10.55 11.65 11.18 

ES 8.26 10.50 9.07 10.43 12.50 11.23 

GA 8.42 11.34 9.67 11.54 13.93 12.63 

  

Fig. 6 illustrates the training error curves along with the 
progress of evolutionary training (the number of evaluations). 
Each curve shows errors in the best run among the 10 runs by 
each algorithm. 

 

 

Figure 6.  Training errors by DE, PSO, ES and GA. 

 

Fig. 6 revealed that, 

 From 100,000 to 200,000 evaluations, the error by DE was 
the largest, but, 

 From 200,000 to 500,000 evaluations, the error by DE 
decreased more quickly, and 

 At 600,000 evaluations, the error by DE reached to a small 
value which PSO could reach at 1,000,000 evaluations.  

Thus, in the early stage, DE explored solutions more 
globally than the other algorithms, and then DE could exploit 
solutions more efficiently. This result shows the better ability 
of DE in balancing explorations and exploitations. This ability 

stems from the differential vector   −    in producing the 

donor   . In the early stage, the parents   1,  2, … ,    are 
scattered in the search space so that the differential vector 



International Journal of Science and Engineering Investigations, Volume 9, Issue 103, August 2020 26 

www.IJSEI.com                       Paper ID: 910320-05 ISSN: 2251-8843 

becomes larger. Therefore, the distance between the parent    

and the offspring    is also larger. Reversely, in the later stage, 

the parents   1,  2, … ,    are gathered in smaller areas so that 
the differential vector becomes smaller. Therefore, the distance 

between the parent    and the offspring    is also smaller. The 
idea of adopting differential vectors to the reproduction makes 
DE a promising algorithm. 

  

V. CONCLUSION AND FUTURE WORK 

The author adopted DE to the evolutionary training of an 
autoencoder. The experimental result with the data of 
handwritten digits showed that DE contributed significantly 
better than GA but not significantly better than PSO and ES. 
The error curves illustrated the efficiency in finding good 
solutions. DE could make the error smaller than 8% much 
earlier than PSO, ES and GA.  

The author will further evaluate, compare and improve the 
abilities of other evolutionary/swarm algorithms and their 
hybrids in the training of deep neural networks.  
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