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Abstract- We implemented an system to track daily 
physiological states with a hand-made sensor implemented 
using a Micro:bit microprocessor. The system is capable of live 
streaming electroencephalogram (EEG) data, feature 
extraction, and brain state classification using deep learning 
models. Empirical Mode Decomposition (EMD) is used to 
decompose and filter data. Two deep learning models are used 
to classify brain states based on the decomposed data. The first 
model uses an ensemble voting mechanism with Keras 
classifier, and the second model applies a convolutional neural 
network (CNN) to images generated from the raw EEG data. 
Both methods confirmed satisfactory performance in brain 
state classification. 

Keywords- EEG, Brain State classification, Deep Learning 

 

I. INTRODUCTION 

Advanced sensor based wearable devices have shown to be 
successful in various applications that use physiological data to 
detect people’s brain states. For example, we built an 
electroencephalogram (EEG) based sleep enhancement system 
with Delta waves and musical interventions to decrease the 
frustration and dread associated with sleep complications [1]. 
Our goal is to develop a light weight cost-effective EEG 
system for convenient daily usage. The system should have the 
capability of collecting EEG data, analyzing it, and providing 
feedback about the brain state classification. 

The challenges lie in maximizing the portability and cost-
effectiveness while ensuring sufficient accuracy in brain state 
classification. We investigated the potential of using single 
channel EEG data to identify brain states. Proper positioning of 
the EEG sensor, feature extraction, and modeling with effective 
machine learning algorithms became critical to overcome the 
limitations of single channel EEG data. Research has 
discovered that the forehead is a sensitive position in reflecting 
brain activities [2-3]. As for the machine learning model, deep 
learning with a neural network has been proven to be the most 
effective method. 

Dry EEG sensors use Electrodermal Activity (EDA), i.e., 
the human skin’s ability to conduct electricity. The 

conductivity varies with the state of the sweat glands in the 
skin. This dermic response can be monitored by measuring the 
changes in skin resistance caused by the sweat [4]. With 
Micro:bit, EEG is measured by placing two electrodes on the 
skin, one inch apart. A small voltage is applied to the 
electrodes, a circuit is formed, and an electrical current flow is 
generated. The changes in the voltage are used to evaluate the 
stress level [5]. The forehead is one of the places on human 
body that have the greatest number of sweat glands [6]. This 
raises the ability of the EEG data to reflect brain activities. 

The organization of this paper is as follows: We present the 
design of the Micro:bit based EEG device and how it reads 
EEG data in Section II. In Section III, we present data 
processing using empirical mode decomposition, and then 
brain state classification with the Keras and CNN models. In 
Section IV, we discuss the limitations of the study, future 
work, and concluding remarks. 

 

II. EEG SENSOR DESIGN 

A. EEG Sensor 

Existing physiological reading systems, e.g., those used in 
patient monitoring, are ineffective for daily practices. We aim 
to implement an environment for daily physiological tracking 
with EEG sensors. With Micro:bit microprocessor, we 
implemented an affordable, reusable, expandable, and wireless, 
device that can monitor the user's brain waves.  The device is 
capable of live streaming collected data and exporting data to a 
central server via a mobile app. Fig. 1 shows the system 
architecture. 

 

Figure 1.  System architecture 
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For the collection of EEG brain wave signals, a hand-made 
headset is connected to the mobile phone via a Bluetooth 
module. Data is collected from the EEG headset and sent to the 
central server via the mobile phone. The design of the EEG 
headset is shown in Fig. 2. A voltage divider circuit is used to 
detect voltage changes between two poles of the electrodes. 
Two rectangular copper electrodes (35x15mm) are placed on 
the forehead 15 mm apart. Silicon is placed around the outer 
edge of the electrodes. The electrodes are connected to a 
Micro:bit, and a voltage of 0.5 V is sent to the first electrode. 
The electrical current passes through the skin and into the 
second electrode.  The Micro:bit sends and receives the voltage 
as an analog value between 0 – 1023 with the maximum 
voltage being 3.3 V. The analog value is converted to volts 
with the equation 
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Figure 2.  EEG device 

 

A voltage divider reduces the 3.3 V output to 0.5 V. The 
reduced voltage is determined by 
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The data rendering software on the mobile phone is able to 
connect with the EEG device and relay the EEG data to the 
central server, and render the brain state curve on the phone 
based on server’s feedback. Fig. 3 is a snapshot of the mobile 
app. 

B. The Server 

The central server handles machine learning for brain state 
recognition and rendering of brain state information. Both the 
deep learning methods and the data processing method, i.e., the 
ensemble empirical mode decomposition (EEMD), have high 
time and space complexity, and thus require sufficient 

computing power to ensure real-time data processing and 
responses to the mobile app’s data input. 

Fig. 4 illustrates a service log that shows the timestamps (in 
seconds) of the server's responses to EEG data uploaded in 
every second. Our EEG acquisition device sends 128 samples 
of EEG readings every time to the server. It reads a sample 
whenever it detects a change in voltage readings. Although 
slow brain activities entail longer data collection time for 128 
samples, statistically, it collects 128 samples in every second. 
Fig. 4 indicates that the server's response time to data 
uploading allows real-time processing of input data.  

 

 

Figure 3.  Mobile app 

 

Brain state classification feedback is sent back in a 
configurable time interval. The 30 second feedback interval is 
the most frequently used in the current system. 

 

 

Figure 4.  Server’s log 

 

III. DATA PROCESSING AND MODELING 

There are various methods for EEG data processing [7-8], 
feature extraction [9-10], and modeling [11-13]. Our 
experiments indicated that EMD is an effective method for 
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exposing features of EEG data that enhance the performance of 
brain state classifier. 

A. Empirical Mode Decomposition 

Empirical Mode Decomposition (EMD) transforms wave 
forms into a series of components called Intrinsic Mode 
Functions (IMFs). Some recording artifacts such as low 
frequency drift can be identified by examining the IMFs. 
Ensemble Empirical Mode Decomposition (EEMD) is a noise-
assisted method to improve shifting and generate better EEG 

data from a selected set of IMFs. Low frequency drift can be 
removed by eliminating IMFs that show a consistent 
increasing/decreasing tendency. We then use the remaining 
IMFs directly as features in the next steps. Fig. 5 shows the 
IMFs obtained by applying EEMD to a 30 second recording of 
Micro:bit EEG data, where the red waveform on top is the raw 
data, and green waveforms thereafter are IMFs. The monotonic 
IMFs towards the bottom can be regarded as low-frequency 
drift. 

 

 

Figure 5.  EEMD of Microbit EEG data 

 

B. Keras Classifier with Ensemble Voting Method 

We use a 30 second window to take a block of EEG 
sequence to perform EEMD. The number of IMFs returned by 
EEMD is around 12. We take the first 10 IMFs as the new 
EEG data for classification. This way, we get rid of low-
frequency drift, which exists in the lowest IMFs beyond the 
first 10. 

The dataset we used for the experiment had recordings in 4 
brain states, viz., “Control,” “noAction,” “Reading,” and 
“Piano.” “Control” is the recording of the Micro:bit readings 
when two electrodes are connected. Therefore, the “Control” 
state was used as the baseline. “noAction” was the recording 
while the subject stayed in an idle state. “Reading” was the 
recording while the subject was reading an article on the 
computer screen. “Piano” was the recording while the subject 
was playing piano. All data was generated from a single 
subject. 

We used a Keras classifier to build the model. Fig. 6 shows 
the structure of the model. The model takes 10 IMFs from 
EEMD as the input and classifies every EEG sample against 
the 4 brain states. 

 

Figure 6.  Keras model 

 

The classification performance of the raw IMF data is 
shown in Fig. 7. The overall accuracy was 68.03%. 

The ensemble voting is done by taking the biggest class as 
the winner for the 30 second segment. The sampling rate is 
128, thus each segment has 3,840 predicted labels (and hence 
voters). The brain state predicted for the corresponding 
segment is the biggest predicted class. 

def baseline_model(): 

model = Sequential() 

model.add(Dense(10, input_dim=10, 

activation='relu')) 

model.add(Dense(7, activation='relu')) 

model.add(Dense(4, activation='softmax')) 

model.compile(loss='categorical_crossentropy',  

 optimizer='adam', metrics=['accuracy']) 

return model 

estimator = 

KerasClassifier(build_fn=baseline_model,  

epochs=10, batch_size=128, verbose=0) 
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Figure 7.  Keras raw IMF data classifier performance 

 

The result of classification is shown in Fig. 8, where we can 
see the classification performance, viz., precision and recall, 
for each brain state, and the overall accuracy 79.31%. Please 
note that this performance is validation performance. 

 

 

Figure 8.  Keras ensemble classifier performance 

 

This experiment suggests that features embedded in 30 
second segments can reflect characteristics of the brain state 
and enhance the performance of the classifier. We then 
converted segment EEG data to images and used 2-D 
convolutional neural networks to classify the images directly. 

C. 2-D CNN Classifier Method 

Every 30 second segment was converted to an image by 
stacking up the sub-images converted from each IMF. Each 
IMF is converted to an 16 × 240 image and images converted 
from 10 IMFs are vertically stacked to form an 160 × 240 
image. These images are 80-20% random split for the training 
and testing datasets. 

The CNN classifier is defined using pyTorch in Fig. 9. The 
model is trained for 100 epochs and then tested. The prediction 
performance of the model is shown in Fig. 10.  

 

 

Figure 9.  2D-CNN model 

 

Comparing the performance of this 2D-CNN model to that 
of the ensemble Keras model, we can confirm that 30 second 
segmentation is effective in exposing features of brain states 
from the EEG data recorded by our Micro:bit-based EEG 
device. 

 

Confusion Matrix 

         Pred   0     1      2     3       Legend 

Label 0 [46852 13595  5478 10875]     0 - Control 

      1 [10349 53464  1377 11610]     1 - noAction 

      2 [ 1871    38 74736   155]     2 - Piano 

      3 [16816 22424  3625 33935]     3 - Reading 

       label        precision     recall 
    0     0.617  0.610 

    1     0.597  0.696 

    2     0.877  0.973 

    3     0.600  0.442 

precision total: 0.6729 
recall total: 0.6803 

accuracy: 0.6803 

Confusion Matrix 

         Pred  0  1  2  3      Legend 

Label 0 [23  5  0  1]     0 - Control 

      1 [ 2 24  0  3]     1 - 

noAction 

      2 [ 0  0 29  0]     2 - Piano 

      3 [ 4  9  0 16]     3 - Reading 

       label        precision     recall 
    0     0.793  0.793 

    1     0.632  0.828 

    2     1.000  1.000 

    3     0.800  0.552 

precision total: 0.8062 

recall total: 0.7931 

accuracy: 0.7931 

class Mish(nn.Module): 

    def mish(input): 

        return input * torch.tanh(F.softplus(input)) 

    def __init__(self): 

        super().__init__() 

    def forward(self, input): 

        return self.mish(input) 

 

class EEGImgNet(Module): 

    def __init__(self): 

        super(EEGImgNet,self).__init__() 

        self.block_1 = Sequential(OrderedDict([ 

            ('conv_1', Conv2d(3, 3,  

                 kernel_size = (16, 24), stride = 1)), 

            ('conv_2', Conv2d(3, 8,  

                 kernel_size = (16, 24), stride = 1)), 

            ('bn_1', BatchNorm2d(8)), 

            ('act_1', Mish()), 

            ('pooling_1', MaxPool2d(kernel_size = (1, 1), 

                 stride = (1, 1))),                                               

            ]) 

        ) 

        self.block_2 = Sequential(OrderedDict([ 

            ('conv_1', Conv2d(8, 8,  

                 kernel_size = (8, 12), stride = 1)), 

            ('bn_1', BatchNorm2d(8)), 

            ('act_1', Mish()), 

            ('conv_2', Conv2d(8, 8,  

                 kernel_size = (8, 12), stride = 1)), 

            ('bn_2', BatchNorm2d(8)), 

            ('act_2', Mish()), 

            ('pooling_1', MaxPool2d(kernel_size = (1, 1),  

                 stride = (1, 1))),                                               

            ]) 

        )        

        self.block_3 = Sequential(OrderedDict([ 

            ('conv_1', Conv2d(8, 16,  

                 kernel_size = (4, 6), stride = 1)), 

            ('bn_1', BatchNorm2d(16)), 

            ('act_1', Mish()), 

            ('conv_2', Conv2d(16, 16,  

                 kernel_size = (4, 6), stride = 1)), 

            ('bn_2', BatchNorm2d(16)), 

            ('act_2', Mish()), 

            ('conv_3', Conv2d(16, 16,  

                 kernel_size = (4, 6), stride = 1)), 

            ('bn_3', BatchNorm2d(16)), 

            ('act_3', Mish()), 

            ('pooling_1', MaxPool2d( 

                 kernel_size = (1, 1), stride = (1, 1))),                                               

            ]) 

        ) 

        self.fc = Sequential(Linear(32*3*77, 4096), 

            Mish(), Dropout2d(2.2), 

            Linear(4096, 4096), Mish(), Dropout2d(2.2), 

            Linear(4096, 2048), Mish(), Dropout2d(2.2), 

            Linear(2048, 4) 

        ) 

    def forward(self,inp): 

        tmp = self.block_1(inp) 

        tmp = self.block_2(tmp) 

        tmp = self.block_3(tmp) 

        tmp = tmp.view(tmp.size(0), -1) 

        tmp = self.fc(tmp) 

        return tmp 
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IV. DISCUSSION AND CONCLUDING REMARKS 

A. Limitations of the Work 

The work has two limitations. Firstly, the amount of 
available data for the experiment is relatively small. This is 
because our EEG device is still undergoing improvement. 
Since the wearable headset is used for EEG data collection, the 
design of the headset plays a big role in users’ experience and 
may affect the quality of the data collected. This also affects 
the set of the brain states in which quality data can be collected 
for proper brain state classification. For example, in our 
experiment, we can observe that the “Piano” state is the most 
distinguishable state in the ensemble Keras model. This could 
be since more electromyography and electro-oculography 
dynamics were involved in the EEG data recording. This effect 
was leveled off in the CNN model, probably due to CNN 
model’s finer feature extraction capability. 

 

 

Figure 10.  2D-CNN classifier performance 

 

Fig. 11 shows the current design of the headset. 

 

 

Figure 11.  EEG heradset design 

 

The second limitation lies in the stability of the EEG data 
recording function of the device. There are a lot of factors that 
can affect the recorded EEG data, e.g. the circuitry for 
detecting the voltage change on the electrodes and the size, 
shape, and spacing of the electrodes. 

B. Future Work 

Continuous improvements on the design of the EEG device 
are needed to improve the quality of the collected data and 

enrich the set of distinguishable brain states by analyzing the 
data. 

More examination of feature extraction and modeling 
methods will be done during the improvements of the EEG 
device design. It is worthwhile to examine whether different 
feature extraction and segmentation methods work better for 
different brain states. For example, 30 second segmentation is 
widely used in EEG data classification [14]. However, different 
brain states may be suitable for different segmentation window 
sizes. 

Different machine learning methods may be apt for 
different types of brain state classification as well. For 
example, recurrent neural networks are good at capturing 
memory mechanisms in time sequence analysis, generative 
adversarial networks can be used in data translation and 
augmentation, etc. It should be useful to develop a machine 
learning algorithm that considers the historical information of 
past brain states in the classification of the current brain state. 

C. Concluding Remrks 

We designed an EEG device by adding circuitry and 
electrodes to a Micro:bit microprocessor. This low-cost single 
channel EEG sensor is able to read EEG data by capturing 
changes of voltage on the human scalp. The recorded EEG data 
is filtered by ensemble empirical mode decomposition 
(EEMD), and after dropping the lowest frequency intrinsic 
mode functions (IMFs) to remove low frequency drift, the 
remaining IMFs are segmented using a 30 second window. We 
tested a Keras classifier with ensemble voting and a two-
dimensional convolutional neural network that takes the 
images converted from the EEG segments as input. The 
prediction accuracy is around 80%. This experiment gives us 
promising results and sets a starting point for further 
improvements in the system design. 
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