

64

International Journal of

Science and Engineering Investigations vol. 5, issue 59, December 2016

ISSN: 2251-8843

Applying Program Evaluation and Review Technique to Parallel

Computing

Janusz Kowalik
1
, Piotr Arłukowicz

2

1
(ret) The Boeing Company, USA

2
The University of Gdańsk

(1j.kowalik@comcast.net, 2piotao@inf.ug.edu.pl)

Abstract- Using Amdahl’s Law it is possible to estimate the
upper bound for parallel speedup. In deriving the Law it is
assumed that the considered application can use limitless
number of processors so that the processing time of the code
parallel fraction can be reduced to 0. In real applications it is
more useful to calculate the shortest parallel computing time
and the required number of processors. This can be
accomplished by using the ideas related to the methods of
Program Evaluation and Review Technique and critical path in
directed acyclic graphs representing parallel algorithms. We
can calculate the number of processors needed to process
parallel code in the shortest time. We call this number the
critical number of processors.

Keywords- PERT, Parallel processing,Ccritical path

I. INTRODUCTION

The first researcher who considered the issue of parallel
speedup limits was Gene Amdahl. He assumed that program
has two fixed components: parallel component and sequential
component. Processing sequentially parallel component takes
fraction p of the entire code time and processing sequential
component takes s=1-p fraction of time. The sequential
computing time is p+s=1 and parallel computation takes s+p/N
time where N is the number of processors used to compute the
parallel fraction. Hence we get the following speedup limit:

1

1

1

1

/

lim

p

PN P

T s p

S
s p N

S S s

 (1)

The inverse of the sequential fraction is the upper bound of
the achievable speedup. This upper bound is optimistic
because we assume that the parallel fraction time can be
reduced to zero. This result has been called the Amdahl’s Law.
Couple of decades later John Gustafson observed that for real
life large problems solved by large computers parallel fraction
increases in increasing problem sizes relative to the sequential
fraction. This observation led him to very different results
related to speedup.

1

1

0

0

/

lim

P

p
s

T s pN

s pN s pN
S

s pN N s pN

S N

 (2)

Gustafson results have been confirmed experimentally and
indicate that for large scale systems solved using
supercomputers speedup converges to N and efficiency to 100
%. Both Amdahl’s Law and Gustafson’s result are limits. In
practical application of parallel processing we are also
interested in finding the minimum parallel processing time and
the number of processors that are required for achieving the
shortest parallel processing time.

For accomplishing these objectives we can use a classic
technique used to manage large complex projects.

In the 1950s Remington Rand, Booz, Allen and Hamilton
and Lockheed Missile Systems Division developed technique
called PERT (Program Evaluation and Review Technique)
[1-4] for the Special Projects Office of the Department of the
US Navy. The motivation was helping the research and
development of the US Navy InterContinental Ballistic Missile
(ICBM) Polaris.

The main capability of the method was to serve as a tool for
managing complex projects involving hundreds or thousands of
interrelated tasks. In the mid of 1960s PERT was implemented
on the British computer Elliott 803B and used in the civilian
Gdansk Shipyard in Poland [5]. The applications of PERT in
the Polaris project and at the commercial shipyard in Gdansk
were successful. The project's completion times were reduced
by many months. A unique application of PERT was for
managing the preparation for the Winter Olympics in Grenoble
in 1968. In this application scientific technique of PERT
proved to be useful for large nonindustrial projects. In PERT
project is partitioned into major tasks represented by directed
acyclic graph (DAG). A small example of DAG is shown in
Fig.1

International Journal of Science and Engineering Investigations, Volume 5, Issue 59, December 2016 65

www.IJSEI.com Paper ID: 55916-07 ISSN: 2251-8843

Figure 1. Directed acyclic graph example

In directed acyclic graph edges (arrows) represent tasks to
be performed. The project graph specifies scheduling sequence
and duration of tasks. The project is completed when all tasks
are finished. Each task has duration time. In some PERT
versions it is possible to specify three duration times for every
task. The optimistic shortest time, the pessimistic longest time
and the most likely time. One of the most useful concepts is the
critical path of a given graph. The critical path is the longest
path from the beginning (in our example node 1) to the end
(node 8). For the sake of discussion let us assume that for our
example this path is from node1 via nodes 2, 4, 7 to node 8.

In managing projects the critical path is important because
any delay along this path will impact adversely the completion
of the project. On the other hand if we desire to shorten the
project we must reduce the critical path time. Other paths from
node 1 to 8 have some time slack. The critical path has no
slack. The total length of the critical path is the shortest time
for completing the project represented by the graph. We can
summarize advantages and disadvantages of PERT.

Among advantages are:

 better understanding of scheduling tasks and their
relationships,

 identification of tasks that cannot be delayed,

 estimation of the project completion date

Disadvantages include:

 large graphs are hard to display or print

 It is difficult to provide time duration for uncertain
tasks.

II. USING PERT CONCEPTS FOR PARALLEL COMPUTING

A significant application of the PERT techniques was
hinted by Richard Brent from The Australian National
University. Brent published in 1974 a paper [6] on parallel
evaluation of arithmetic expression and pointed out that
parallel algorithms could be represented by directed acyclic
graphs. Parallel algorithms are projects and some techniques of
PERT apply to them. Brent did not mention PERT but used a

related concept of the critical path developed in the same
period of time.

If a DAG represents parallel algorithm every directed edge
is a computing task executed serially by single processor.
Different task can be executed in parallel if they are
independent but every task is executed by a single processor.
Furthermore we assume every task is ready to execute as soon
as all connected predecessor tasks have been done. We also
assume that it is possible to estimate execution time for every
task and that these times cannot be reduced. Given this
information the sequential computing time is the sum of all
tasks times in the graph. By definition the critical path is the
longest path in the graph from its beginning to the end. Since
each task of the critical path has to be executed serially the
execution time of the critical path cannot be shortened.

Thus the critical path execution time is the shortest possible
parallel execution of the entire DAG representing some parallel
algorithm.

The sequential processing time is the longest time. Adding
more processors the parallel computing time shrinks. Initially
the total parallel time is larger than the critical path time
because there are not enough processors. We are interested to
find the minimum number of processors for processing graph
in the shortest possible time that is the critical path time. This
minimal number of processors will be called the critical
number of processors.

To illuminate the meaning and the calculation of critical
number of processors consider DAG in Fig.2.

Figure 2. Simple DAG of parallel computation. All tasks execution times are

5 except two tasks as shown

For this graph the sequential time is 40. The critical path
time is 15. For two processors the parallel time is 25. For three
processors we get 15. This means that for three processors the
parallel time is the shortest possible processing time. Further
increase of processors would not reduce the computation since
15 is the critical path time.

By definition speedup is the ratio of the sequential
processing time to the parallel processing time. The shortest
time for parallel computing is the time required for computing
tasks along the critical path. This can be accomplished if the
number of processors working in parallel is unlimited or
putting it differently if there is sufficient number of processors

International Journal of Science and Engineering Investigations, Volume 5, Issue 59, December 2016 66

www.IJSEI.com Paper ID: 55916-07 ISSN: 2251-8843

for executing all tasks in the parallel processing DAG graph
within the critical path time.

If there is no sufficient number of processors they will not
be able to process all tasks within the critical path time. In this
case the parallel time is longer and speedup worse than
optimal. This can be summarized by following inequalities

 p< pCR Tp > TCR (3)

The Fig 3 illustrates the relationship of processing time on
the used number of processors.

Figure 3. Parallel times. T – time, p – number of processors, critical number
of processors pCR=3, TS – sequential time

What remains to be stated is the formula for evaluating the
critical number of processors.

This formula is:

 (4)

In the considered case the smallest integer greater than
40/15 is 3.

III. SIMPLE LINEAR ALGEBRA EXAMPLE

To illustrate specific parallel computation we consider
computing z=pTAp where p is a vector and A is a matrix.

Firstly we calculate vector v=Ap and then the dot product
of v and p. The calculation of v will be done in parallel. For
large matrix A calculation of dot product pv is relatively very
short and can be ignored. Fig. 4 shows the DAG representation.

Figure 4. The DAG for z=pTAp

Assumptions:

a) Matrix A is 1000x1000

b) A is sliced by rows 400, 200, 200, 200. One slice is
larger than others to get the unique critical path.

c) Each slice is processed by a single processor.

d) The time to compute dot products of 200 rows and
vector p is called T.

In this simple example the sequential time is 5T and the
critical path time is 2T. The upper bound on parallel speedup is
5/2=2. 5

If there are only two processors (p=2) the parallel time is
2T+T=3T and the speedup is 5/3=1.66. For p=3 processors the
parallel time is 2T, the same as the critical path time. Adding
more processors could not shortened the completion time.
Other examples of parallel speedup can be found in [7].

IV. HANDLING LOOPS

The above analysis of parallel computing applies to
algorithms represented by DAGs. Very often algorithm tasks
are loops. If DAG contains tasks that are loops the
corresponding paths can be reduced by applying fork-join
parallelism (the OpenMP style, Fig. 5).

Figure 5. Fork-join parallelism

For example if a path contains three tasks and the second
task is a loop the execution time can be reduced from
TSEQ=T1+T2+T3 to Tp=T1+T2/m+T3, where m is the
number of used threads. The speedup is

 (5)

In reality the speedup will be lower than calculated from
the formula for S due to the OpenMP overhead.

REFERENCES

[1] B. Ralph Stauber, H. M. Douty, Willard Fazar, Richard H. Jordan,
William Weinfeld and Allen D. Manvel. Federal Statistical Activities.
The American Statistician 13(2): 9-12 (Apr., 1959), pp. 9-12

[2] Malcolm, D. G, J. H. Roseboom, C. E. Clark, W. Fazar Application of a
Technique for Research and Development Program Evaluation

International Journal of Science and Engineering Investigations, Volume 5, Issue 59, December 2016 67

www.IJSEI.com Paper ID: 55916-07 ISSN: 2251-8843

OPERATIONS RESEARCH Vol. 7, No. 5, September–October 1959,
pp. 646–669

[3] Klastorin, Ted (2003). Project Management: Tools and Trade-offs (3rd
ed.). Wiley. ISBN 978-0-471-41384-4

[4] Project Management Institute (2013). A Guide to the Project
Management Body of Knowledge (5th ed.). Project Management
Institute. ISBN 978-1-935589-67-9.

[5] O. Pawlowski, M. Brewka,W. Majewski and J. Kowalik, “Pert Cpa,
Cpm Task Networks and their analysis“ (in Polish), Wydawnictwo
Morskie, 1967.

[6] R. P. Brent, ”The Parallel Evaluation of General Arithmetic
Expressions”, Journal of the ACM, 1974.

[7] Arch D. Robinson, Michael McCool and James Reinders “Structured
Parallel Programming: Patterns for Efficient Computation”, Elsevier
Morgan Kaufmann, 2012.

	I. Introduction
	II. Using PERT concepts for parallel computing
	III. Simple linear algebra example
	IV. Handling loops
	References

